Research Article
BibTex RIS Cite

A Comparative Analysis of African Vultures Optimization Algorithm with Current Metaheuristics

Year 2025, Volume: 8 Issue: 1, 325 - 352, 17.01.2025
https://doi.org/10.47495/okufbed.1480875

Abstract

With the increasing complexity of optimization problems, new metaheuristic algorithms are being developed. These algorithms show their success by exhibiting superior performances on different problems. In this paper, the performance of 4 recently proposed metaheuristic algorithms, namely Artificial Hummingbird Algorithm (AHA), African Vultures Optimization Algorithm (AVOA), Crayfish Optimization Algorithm (COA) and Marine Predators Optimization Algorithm (MPA) on 26 test functions are compared. As a result of the comparisons, it was observed that the algorithms outperformed each other with very small differences on different functions. At the same time, the comparison results were evaluated by t-test statistical test. AVOA has shown better or comparable performance to other recent metaheuristics in evaluating the quality of solutions for several test functions. It is aimed to use AVOA on different problems in future research.

References

  • Abdollahzadeh B., Gharehchopogh FS., Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering 2021; 158, 107408.
  • Arslan S. Güncel metasezgisel algoritmalarının performansları üzerine karşılaştırılmalı bir çalışma. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2023; 11(4): 1861-1884.
  • Azizi M., Talatahari S., Gandomi AH. Fire hawk optimizer: A novel metaheuristic algorithm. Artificial Intelligence Review 2023; 56(1): 287-363.
  • Deng L., Liu S. Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design. Expert Systems with Applications 2023; 225, 120069.
  • Dorigo M., Birattari M., Stutzle T. Ant colony optimization. IEEE computational intelligence magazine, 2006; 1(4): 28-39.
  • Dowsland KA., Thompson J. Simulated annealing. Handbook of Natural Computing 2012 1623-1655.
  • Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi AH. Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications 2020; 152, 113377.
  • Ghaedi A., Bardsiri AK., Shahbazzadeh MJ. Cat hunting optimization algorithm: a novel optimization algorithm. Evolutionary Intelligence 2023; 16(2): 417-438.
  • Hosseinzadeh M., Rahmani AM., Husari FM., Alsalami OM., Marzougui M., Nguyen GN., Lee SW. A survey of artificial hummingbird algorithm and its variants: statistical analysis, performance evaluation, and structural reviewing. Archives of Computational Methods in Engineering 2024; 1-42.
  • Jia H., Rao H., Wen C., Mirjalili S. Crayfish optimization algorithm. Artificial Intelligence Review 2023; 56(Suppl 2): 1919-1979.
  • Karaboga D. Artificial bee colony algorithm. Scholarpedia 2010; 5(3): 6915.
  • Kennedy J., Eberhart R. Particle swarm optimization. IEEE In Proceedings of ICNN'95-International Conference on Neural Networks 1995; 4: 1942-1948.
  • Kim TK. T test as a parametric statistic, Korean Journal of Anesthesiology 2015; 68(6): 540-546.
  • Mirjalili S. Genetic algorithm. Evolutionary Algorithms and Neural Networks: Theory and Applications 2019; 43-55.
  • Mishra P., Singh U., Pandey CM., Mishra P., Pandey G. Application of student’s t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia 2019; 22(4): 407.
  • Xue Y., Jia W., Zhao X., Pang W. An evolutionary computation based feature selection method for intrusion detection, Security and Communication Networks 2018.
  • Yang XS. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization. Berlin, Heidelberg: Springer Berlin Heidelberg 2010; 65-74.
  • Yang XS., Deb S. Cuckoo search via Lévy flights. IEEE World congress on nature & biologically inspired computing (NaBIC) 2009; 210-214.
  • Yiğit H., Ürgün S., Mirjalili S. Comparison of recent metaheuristic optimization algorithms to solve the SHE optimization problem in MLI, Neural Computing and Applications 2023; 35(10): 7369-7388.
  • Zhao S., Zhang T., Ma S., Chen M. Dandelion optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Engineering Applications of Artificial Intelligence 2022; 114, 105075.
  • Zhao W., Wang L., Mirjalili S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Computer Methods in Applied Mechanics and Engineering 2022; 388, 114194.
  • Zhu D., Wang L., Zhou C., Yan S., Xue J. Human memory optimization algorithm: A memory-inspired optimizer for global optimization problems. Expert Systems with Applications 2023; 237, 121597.

Afrika Akbabaları Optimizasyon Algoritmasının Güncel Metasezgisellerle Karşılaştırmalı Analizi

Year 2025, Volume: 8 Issue: 1, 325 - 352, 17.01.2025
https://doi.org/10.47495/okufbed.1480875

Abstract

Optimizasyon problemlerinin karmaşıklığının artmasıyla birlikte yeni metasezgisel algoritmalar geliştirilmektedir. Bu algoritmalar farklı problemler üzerinde üstün performanslar sergileyerek başarılarını göstermektedir. Bu çalışmada, son zamanlarda önerilen 4 metasezgisel algoritma olan Yapay Sinekkuşu Algoritması (Artificial Hummingbird Algorithm, AHA), Afrika Akbabaları Optimizasyon Algoritması (African Vultures Optimization Algorithm, AVOA), Kerevit Optimizasyon Algoritması (Crayfish Optimization Algorithm, COA) ve Deniz Yırtıcıları Optimizasyon Algoritması’nın (Marine Predators Optimization Algorithm, MPA) 26 test fonksiyonu üzerindeki performansları karşılaştırılmıştır. Karşılaştırmalar sonucunda algoritmaların farklı fonksiyonlar üzerinde çok küçük farklarla birbirlerinden daha iyi performans gösterdiği gözlemlenmiştir. Aynı zamanda karşılaştırma sonuçları t-test istatistiksel testi ile değerlendirilmiştir. AVOA, çeşitli test fonksiyonları için çözümlerin kalitesini değerlendirmede diğer yeni metasezgisellere göre daha iyi veya karşılaştırılabilir performans göstermiştir. Gelecek araştırmalarda AVOA’nın farklı problemler üzerinde kullanılması hedeflenmektedir.

References

  • Abdollahzadeh B., Gharehchopogh FS., Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Computers & Industrial Engineering 2021; 158, 107408.
  • Arslan S. Güncel metasezgisel algoritmalarının performansları üzerine karşılaştırılmalı bir çalışma. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2023; 11(4): 1861-1884.
  • Azizi M., Talatahari S., Gandomi AH. Fire hawk optimizer: A novel metaheuristic algorithm. Artificial Intelligence Review 2023; 56(1): 287-363.
  • Deng L., Liu S. Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design. Expert Systems with Applications 2023; 225, 120069.
  • Dorigo M., Birattari M., Stutzle T. Ant colony optimization. IEEE computational intelligence magazine, 2006; 1(4): 28-39.
  • Dowsland KA., Thompson J. Simulated annealing. Handbook of Natural Computing 2012 1623-1655.
  • Faramarzi A., Heidarinejad M., Mirjalili S., Gandomi AH. Marine predators algorithm: A nature-inspired metaheuristic. Expert Systems with Applications 2020; 152, 113377.
  • Ghaedi A., Bardsiri AK., Shahbazzadeh MJ. Cat hunting optimization algorithm: a novel optimization algorithm. Evolutionary Intelligence 2023; 16(2): 417-438.
  • Hosseinzadeh M., Rahmani AM., Husari FM., Alsalami OM., Marzougui M., Nguyen GN., Lee SW. A survey of artificial hummingbird algorithm and its variants: statistical analysis, performance evaluation, and structural reviewing. Archives of Computational Methods in Engineering 2024; 1-42.
  • Jia H., Rao H., Wen C., Mirjalili S. Crayfish optimization algorithm. Artificial Intelligence Review 2023; 56(Suppl 2): 1919-1979.
  • Karaboga D. Artificial bee colony algorithm. Scholarpedia 2010; 5(3): 6915.
  • Kennedy J., Eberhart R. Particle swarm optimization. IEEE In Proceedings of ICNN'95-International Conference on Neural Networks 1995; 4: 1942-1948.
  • Kim TK. T test as a parametric statistic, Korean Journal of Anesthesiology 2015; 68(6): 540-546.
  • Mirjalili S. Genetic algorithm. Evolutionary Algorithms and Neural Networks: Theory and Applications 2019; 43-55.
  • Mishra P., Singh U., Pandey CM., Mishra P., Pandey G. Application of student’s t-test, analysis of variance, and covariance. Annals of Cardiac Anaesthesia 2019; 22(4): 407.
  • Xue Y., Jia W., Zhao X., Pang W. An evolutionary computation based feature selection method for intrusion detection, Security and Communication Networks 2018.
  • Yang XS. A new metaheuristic bat-inspired algorithm. Nature inspired cooperative strategies for optimization. Berlin, Heidelberg: Springer Berlin Heidelberg 2010; 65-74.
  • Yang XS., Deb S. Cuckoo search via Lévy flights. IEEE World congress on nature & biologically inspired computing (NaBIC) 2009; 210-214.
  • Yiğit H., Ürgün S., Mirjalili S. Comparison of recent metaheuristic optimization algorithms to solve the SHE optimization problem in MLI, Neural Computing and Applications 2023; 35(10): 7369-7388.
  • Zhao S., Zhang T., Ma S., Chen M. Dandelion optimizer: A nature-inspired metaheuristic algorithm for engineering applications. Engineering Applications of Artificial Intelligence 2022; 114, 105075.
  • Zhao W., Wang L., Mirjalili S. Artificial hummingbird algorithm: A new bio-inspired optimizer with its engineering applications. Computer Methods in Applied Mechanics and Engineering 2022; 388, 114194.
  • Zhu D., Wang L., Zhou C., Yan S., Xue J. Human memory optimization algorithm: A memory-inspired optimizer for global optimization problems. Expert Systems with Applications 2023; 237, 121597.
There are 22 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other)
Journal Section RESEARCH ARTICLES
Authors

Sibel Arslan 0000-0003-3626-553X

Yıldız Zoralioğlu 0009-0008-7482-0964

Muhammed Furkan Gul 0009-0007-0486-0525

Early Pub Date January 15, 2025
Publication Date January 17, 2025
Submission Date May 13, 2024
Acceptance Date September 13, 2024
Published in Issue Year 2025 Volume: 8 Issue: 1

Cite

APA Arslan, S., Zoralioğlu, Y., & Gul, M. F. (2025). A Comparative Analysis of African Vultures Optimization Algorithm with Current Metaheuristics. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(1), 325-352. https://doi.org/10.47495/okufbed.1480875
AMA Arslan S, Zoralioğlu Y, Gul MF. A Comparative Analysis of African Vultures Optimization Algorithm with Current Metaheuristics. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. January 2025;8(1):325-352. doi:10.47495/okufbed.1480875
Chicago Arslan, Sibel, Yıldız Zoralioğlu, and Muhammed Furkan Gul. “A Comparative Analysis of African Vultures Optimization Algorithm With Current Metaheuristics”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8, no. 1 (January 2025): 325-52. https://doi.org/10.47495/okufbed.1480875.
EndNote Arslan S, Zoralioğlu Y, Gul MF (January 1, 2025) A Comparative Analysis of African Vultures Optimization Algorithm with Current Metaheuristics. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8 1 325–352.
IEEE S. Arslan, Y. Zoralioğlu, and M. F. Gul, “A Comparative Analysis of African Vultures Optimization Algorithm with Current Metaheuristics”, Osmaniye Korkut Ata University Journal of The Institute of Science and Techno, vol. 8, no. 1, pp. 325–352, 2025, doi: 10.47495/okufbed.1480875.
ISNAD Arslan, Sibel et al. “A Comparative Analysis of African Vultures Optimization Algorithm With Current Metaheuristics”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi 8/1 (January 2025), 325-352. https://doi.org/10.47495/okufbed.1480875.
JAMA Arslan S, Zoralioğlu Y, Gul MF. A Comparative Analysis of African Vultures Optimization Algorithm with Current Metaheuristics. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8:325–352.
MLA Arslan, Sibel et al. “A Comparative Analysis of African Vultures Optimization Algorithm With Current Metaheuristics”. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 8, no. 1, 2025, pp. 325-52, doi:10.47495/okufbed.1480875.
Vancouver Arslan S, Zoralioğlu Y, Gul MF. A Comparative Analysis of African Vultures Optimization Algorithm with Current Metaheuristics. Osmaniye Korkut Ata University Journal of The Institute of Science and Techno. 2025;8(1):325-52.

23487


196541947019414

19433194341943519436 1960219721 197842261021238 23877

*This journal is an international refereed journal 

*Our journal does not charge any article processing fees over publication process.

* This journal is online publishes 5 issues per year (January, March, June, September, December)

*This journal published in Turkish and English as open access. 

19450 This work is licensed under a Creative Commons Attribution 4.0 International License.