Research Article
BibTex RIS Cite

The Class of Demi-Strongly Order Bounded Operators

Year 2024, Volume: 28 Issue: 2, 364 - 370, 30.04.2024
https://doi.org/10.16984/saufenbilder.1371744

Abstract

In this paper, we introduce the class of demi-strongly order bounded operators on a Riesz space generalization of strongly order bounded operators. Let M be a Riesz space, an operator H from M into M is said to be a demi-strongly order bounded operator if for every net {u_α} in M^+ whenever 0≤u_α↑ ≤u^'',u^'' in M^(∼∼) and {u_α-H(u_α )} is order bounded in M, then {u_α} is order bounded in M. We obtain a characterization of the b-property by the term of demi-strongly order bounded operators. In addition, we study the relationship between strongly order bounded operators and demi-strongly order bounded operators. Finally, we also investigate some properties of the class of demi-strongly order bounded operators.

References

  • [1] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Berlin: Springer, 2006.
  • [2] S. Alpay, B. Altın, C. Tonyalı, “On property (b) of vector lattices,” Positivity, vol. 7, pp. 135-139, 2003.
  • [3] S. Alpay, B. Altın, C. Tonyalı, “A note on Riesz spaces with property-b,” Czechoslovak Mathematical Journal, vol. 56, no. 2, pp. 765-772, 2006.
  • [4] S. Alpay, B. Altın, “On Riesz spaces with b-property and strongly order bounded operators,” Rendiconti del Circolo Matematico di Palermo, vol. 60, pp. 1-12, 2011.
  • [5] D. A. Birnbaum, “Preregular maps between Banach lattices,” Bullettin of the Australian Mathematical Society, vol. 11, pp. 231-254, 1974.
  • [6] W. V. Petryshyn, “Construction of fixed points of demicompact mappings in Hilbert space,” Journal of Mathematical Analysis and Applications, vol.14, no.2, pp. 276-284, 1966.
  • [7] B. Krichen, D. O’Regan, “Weakly demicompact linear operators and axiomatic measures of weak noncompactness,” Mathematica Slovaca, vol. 69, no. 6, pp. 1403-1412, 2019.
  • [8] H. Benkhaled, M. Hajji, A. Jeribi, “On the class of Demi Dunford-Pettis Operators,” Rendiconti del Circolo Matematico di Palermo Series 2, vol. 72, pp. 901-911, 2023.
  • [9] H. Benkhaled, A. Elleuch, A. Jeribi, “The class of order weakly demicompact operators,” Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Series A. Matemáticas, vol. 114, no. 2, 2020.
  • [10] H. Benkhaled, A. Jeribi, “The class of demi KB-operators on Banach lattices,” Turkish Journal of Mathematics, vol. 47, no. 1, pp. 387-396, 2023.
  • [11] N. Machrafi, B. Altın, “A note on topologically b-order bounded sets and generalized b-weakly compact operators,” Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 2, pp. 483-493, 2021.
Year 2024, Volume: 28 Issue: 2, 364 - 370, 30.04.2024
https://doi.org/10.16984/saufenbilder.1371744

Abstract

References

  • [1] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Berlin: Springer, 2006.
  • [2] S. Alpay, B. Altın, C. Tonyalı, “On property (b) of vector lattices,” Positivity, vol. 7, pp. 135-139, 2003.
  • [3] S. Alpay, B. Altın, C. Tonyalı, “A note on Riesz spaces with property-b,” Czechoslovak Mathematical Journal, vol. 56, no. 2, pp. 765-772, 2006.
  • [4] S. Alpay, B. Altın, “On Riesz spaces with b-property and strongly order bounded operators,” Rendiconti del Circolo Matematico di Palermo, vol. 60, pp. 1-12, 2011.
  • [5] D. A. Birnbaum, “Preregular maps between Banach lattices,” Bullettin of the Australian Mathematical Society, vol. 11, pp. 231-254, 1974.
  • [6] W. V. Petryshyn, “Construction of fixed points of demicompact mappings in Hilbert space,” Journal of Mathematical Analysis and Applications, vol.14, no.2, pp. 276-284, 1966.
  • [7] B. Krichen, D. O’Regan, “Weakly demicompact linear operators and axiomatic measures of weak noncompactness,” Mathematica Slovaca, vol. 69, no. 6, pp. 1403-1412, 2019.
  • [8] H. Benkhaled, M. Hajji, A. Jeribi, “On the class of Demi Dunford-Pettis Operators,” Rendiconti del Circolo Matematico di Palermo Series 2, vol. 72, pp. 901-911, 2023.
  • [9] H. Benkhaled, A. Elleuch, A. Jeribi, “The class of order weakly demicompact operators,” Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Series A. Matemáticas, vol. 114, no. 2, 2020.
  • [10] H. Benkhaled, A. Jeribi, “The class of demi KB-operators on Banach lattices,” Turkish Journal of Mathematics, vol. 47, no. 1, pp. 387-396, 2023.
  • [11] N. Machrafi, B. Altın, “A note on topologically b-order bounded sets and generalized b-weakly compact operators,” Hacettepe Journal of Mathematics and Statistics, vol. 51, no. 2, pp. 483-493, 2021.
There are 11 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Research Articles
Authors

Gül Sinem Keleş 0000-0001-5712-239X

Birol Altın 0000-0002-1085-809X

Early Pub Date April 24, 2024
Publication Date April 30, 2024
Submission Date October 5, 2023
Acceptance Date January 22, 2024
Published in Issue Year 2024 Volume: 28 Issue: 2

Cite

APA Keleş, G. S., & Altın, B. (2024). The Class of Demi-Strongly Order Bounded Operators. Sakarya University Journal of Science, 28(2), 364-370. https://doi.org/10.16984/saufenbilder.1371744
AMA Keleş GS, Altın B. The Class of Demi-Strongly Order Bounded Operators. SAUJS. April 2024;28(2):364-370. doi:10.16984/saufenbilder.1371744
Chicago Keleş, Gül Sinem, and Birol Altın. “The Class of Demi-Strongly Order Bounded Operators”. Sakarya University Journal of Science 28, no. 2 (April 2024): 364-70. https://doi.org/10.16984/saufenbilder.1371744.
EndNote Keleş GS, Altın B (April 1, 2024) The Class of Demi-Strongly Order Bounded Operators. Sakarya University Journal of Science 28 2 364–370.
IEEE G. S. Keleş and B. Altın, “The Class of Demi-Strongly Order Bounded Operators”, SAUJS, vol. 28, no. 2, pp. 364–370, 2024, doi: 10.16984/saufenbilder.1371744.
ISNAD Keleş, Gül Sinem - Altın, Birol. “The Class of Demi-Strongly Order Bounded Operators”. Sakarya University Journal of Science 28/2 (April 2024), 364-370. https://doi.org/10.16984/saufenbilder.1371744.
JAMA Keleş GS, Altın B. The Class of Demi-Strongly Order Bounded Operators. SAUJS. 2024;28:364–370.
MLA Keleş, Gül Sinem and Birol Altın. “The Class of Demi-Strongly Order Bounded Operators”. Sakarya University Journal of Science, vol. 28, no. 2, 2024, pp. 364-70, doi:10.16984/saufenbilder.1371744.
Vancouver Keleş GS, Altın B. The Class of Demi-Strongly Order Bounded Operators. SAUJS. 2024;28(2):364-70.