Research Article
BibTex RIS Cite

Toprak Neminin Toprak Karbondioksit Emisyonu Üzerine Etkisi

Year 2020, Volume: 15 Issue: 2, 161 - 165, 09.12.2020

Abstract

Sera etkisi oluşturan gazlardan biri olan karbondioksit gazının topraktan emisyonunu etkileyen birçok etmen vardır. Bunlardan bazıları, toprak sıcaklığı, toprak nemi, toprak organik maddesi ve toprak işleme uygulamalarıdır. Bu çalışmada, laboratuvar ortamında belirli hacim toprakta üç farklı nem oranına sahip toprak ortamı oluşturularak toprak karbondioksit emisyonları saptanmıştır. Toprak karbondioksit emisyonu mobil PP system kullanılarak belirlenmiştir. Aynı zamanda her kayıtta, toprak sıcaklığı ve topraktan buharlaşma ve gravimetrik toprak nem içerikleri de belirlenmiştir.
Elde edilen sonuçlara göre, A, B ve C uygulamaları için oluşturulan toprak ortamının ortalama toprak nemleri %27.5, %22 ve %19.7 olarak bulunmuş ve aralarındaki farklılık istatistiksel olarak önemli bulunmuştur (p≤ 0.01). Uygulamalara bağlı belirlenen toprak karbondioksit emisyonları A, B ve C için sırasıyla 0.328, 0.317 ve 0.304 g m-2 h-1 olarak gerçekleşmiş ve uygulamalar arasındaki fark önemsiz bulunmuştur (p>0.05). Ortalama buharlaşma değerleri, A, B ve C uygulamaları için sırasıyla; 5.78, 7.14, ve 7.50 g m-2 h-1 olarak elde edilmiş ve aralarındaki fark önemsiz bulunmuştur (p>0.05). Toprak sıcaklıkları ise A, B ve C uygulaması için sırasıyla 23.06, 22.04 ve 21.75 oC bulunmuş ve A uygulaması diğer iki uygulamadan daha yüksek bulunurken (p≤0.01) B ve C uygulamaları arasındaki fark önemsiz bulunmuştur (p>0.05).

References

  • Akbolat D, Barut Z B, Turgut M M, Çelik İ (2016). Soil CO2 emissions under conventional and conservational tillage methods in soybean cultivation in Cukurova plain of Turkey. Agronomy, Series A, 59, 15-20.
  • Akbolat D, Ekinci K, Bozkurt Y E, Kumbul B S (2018). The Influence of Soil and Air Temperature on Soil Carbon Dioxide Emission in Farmland. SDU Journal of the Faculty of Agriculture/SDÜ Ziraat Fakültesi Dergisi, 13(1).
  • Akbolat D, Evrendilek F, Coskan A, Ekinci K (2009). Quantifying soil respiration in response to short-term tillage practices: a case study in southern Turkey. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(1), 50-56.
  • Akgül M, Başayiğit L (2005). Süleyman Demirel Üniversitesi Çiftlik arazisinin detaylı toprak etüdü ve haritalanması. SDÜ Fen Bilimleri Enstitüsü Dergisi, 9 (3): 1-10.
  • Al-Azzawi G, Akbolat D (2018). Chisel Plow Tillage Depth Effect on Soil Carbon Dioxide Emission. Scientific Papers-Series A-Agronomy, 61, 27-33.
  • Baver L D, Gardner W H, Gardner W R (1972). Soil Physics. John Wiley and Sons, Inc., New York.
  • Boyle S, Ardill J (1989). The Greenhouse Effect: A Partical Guide to the World's Changing Climate, London: Hodder and Stoughton.
  • Calderon F J, Jackson L E (2002). Rototillage, Disking, and Subsequent irrigation: Effects on Soil Nitrogen Dynamics, Microbial Biomas, and Carbon Dioxide Efflux. Journal of Environmental Quality 31, 752-758.
  • Jabro J D, Sainju U, Stevens W B, Evans R G (2008). Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. Journal of Environmental Management 88, 1478-1484.
  • Lee J, Hopmans J W, Kesel C V, King A P, Evatt K J, Louie D, Rolston D E, Six J (2009). Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean Climate. Agriculture, Ecosystems and Environment 129, 378-390.
  • Linn D M, Doran J W (1984). Effect of water-filled pore on carbon dioxide and nitrous oxide production in tilled end no-tilled soils. Soil Science Society of America Journal, 48, 1267-1272.
  • Oertel C, Matschullat J, Zurba K, Zimmermann F (2016). Greenhouse gas emissions from soils- A review. Chemie Der Erde, 76, 327-352.
  • Patton J C (2008). Soil CO2 flux during and after rainfall events in Iowa. Ph.D. Thesis, Iowa State University, Department of Geological and Atmospheric Sciences, Iowa.
  • Rastogi M, Singh S, Pathak H (2002). Emission of carbon dioxide from soil. Current Science, 82 (5), 510-517.
  • Reth S, Reichstein M, Falge E (2005). The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux–a modified model. Plant and Soil, 268(1), 21-33.
  • Sims B G, O'Neill D H (1994). Testing and evaluation of agricultural machinery and equipment: principles and practices, 274p, (No. 110). Food & Agriculture Org., Roma.

The Effect of Soil Moisture on Soil Carbon Dioxide Emission

Year 2020, Volume: 15 Issue: 2, 161 - 165, 09.12.2020

Abstract

A number of factors are affecting soil’s carbon dioxide gas emission which is one of the greenhouse gases. Those factors are soil temperature, soil moisture, soil organic matter contents and soil cultivation practices. In this study, soil carbon dioxide emissions were determined by creating a soil environment with three different moisture rates in a certain volume of soil in the laboratory condition. Soil carbon dioxide emission determined using mobile PP system. Simultaneously the each carbon dioxide record, soil temperature and evaporation from soil as well as gravimetric soil moisture contents were determined.
According to the results, the average soil moisture of the soil for A, B and C applications was found to be 27.5%, 22% and 19.7%, respectively. The differences between those values were found to be statistically significant (p≤ 0.01). The soil carbon dioxide emissions determined on the A, B and C applications were 0.328, 0.317 and 0.304 g m-2 h-1, respectively, and the difference between the applications was found to be insignificant (p>0.05). The obtained mean evaporation values for A, B and C applications were 5.78, 7.14, and 7.50 g m-2 h-1, respectively. The differences between them were found to be insignificant (p>0.05). Soil temperatures values were 23.06, 22.04 and 21.75 °C, respectively, for A, B and C applications. While the temperature value in A application was significantly (p≤0.01) higher than the other two, the difference between the B and C applications was not significant (p>0.05).

References

  • Akbolat D, Barut Z B, Turgut M M, Çelik İ (2016). Soil CO2 emissions under conventional and conservational tillage methods in soybean cultivation in Cukurova plain of Turkey. Agronomy, Series A, 59, 15-20.
  • Akbolat D, Ekinci K, Bozkurt Y E, Kumbul B S (2018). The Influence of Soil and Air Temperature on Soil Carbon Dioxide Emission in Farmland. SDU Journal of the Faculty of Agriculture/SDÜ Ziraat Fakültesi Dergisi, 13(1).
  • Akbolat D, Evrendilek F, Coskan A, Ekinci K (2009). Quantifying soil respiration in response to short-term tillage practices: a case study in southern Turkey. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(1), 50-56.
  • Akgül M, Başayiğit L (2005). Süleyman Demirel Üniversitesi Çiftlik arazisinin detaylı toprak etüdü ve haritalanması. SDÜ Fen Bilimleri Enstitüsü Dergisi, 9 (3): 1-10.
  • Al-Azzawi G, Akbolat D (2018). Chisel Plow Tillage Depth Effect on Soil Carbon Dioxide Emission. Scientific Papers-Series A-Agronomy, 61, 27-33.
  • Baver L D, Gardner W H, Gardner W R (1972). Soil Physics. John Wiley and Sons, Inc., New York.
  • Boyle S, Ardill J (1989). The Greenhouse Effect: A Partical Guide to the World's Changing Climate, London: Hodder and Stoughton.
  • Calderon F J, Jackson L E (2002). Rototillage, Disking, and Subsequent irrigation: Effects on Soil Nitrogen Dynamics, Microbial Biomas, and Carbon Dioxide Efflux. Journal of Environmental Quality 31, 752-758.
  • Jabro J D, Sainju U, Stevens W B, Evans R G (2008). Carbon dioxide flux as affected by tillage and irrigation in soil converted from perennial forages to annual crops. Journal of Environmental Management 88, 1478-1484.
  • Lee J, Hopmans J W, Kesel C V, King A P, Evatt K J, Louie D, Rolston D E, Six J (2009). Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean Climate. Agriculture, Ecosystems and Environment 129, 378-390.
  • Linn D M, Doran J W (1984). Effect of water-filled pore on carbon dioxide and nitrous oxide production in tilled end no-tilled soils. Soil Science Society of America Journal, 48, 1267-1272.
  • Oertel C, Matschullat J, Zurba K, Zimmermann F (2016). Greenhouse gas emissions from soils- A review. Chemie Der Erde, 76, 327-352.
  • Patton J C (2008). Soil CO2 flux during and after rainfall events in Iowa. Ph.D. Thesis, Iowa State University, Department of Geological and Atmospheric Sciences, Iowa.
  • Rastogi M, Singh S, Pathak H (2002). Emission of carbon dioxide from soil. Current Science, 82 (5), 510-517.
  • Reth S, Reichstein M, Falge E (2005). The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux–a modified model. Plant and Soil, 268(1), 21-33.
  • Sims B G, O'Neill D H (1994). Testing and evaluation of agricultural machinery and equipment: principles and practices, 274p, (No. 110). Food & Agriculture Org., Roma.
There are 16 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Davut Akbolat

Ali Coşkan 0000-0001-5473-3515

Publication Date December 9, 2020
Submission Date August 22, 2020
Acceptance Date October 2, 2020
Published in Issue Year 2020 Volume: 15 Issue: 2

Cite

APA Akbolat, D., & Coşkan, A. (2020). Toprak Neminin Toprak Karbondioksit Emisyonu Üzerine Etkisi. Ziraat Fakültesi Dergisi, 15(2), 161-165.