Research Article
BibTex RIS Cite

BİYOKÖMÜR UYGULAMALARININ KARADENİZ BÖLGESİ TOPRAĞININ pH’SINA ve BAZI BİYOLOJİK AKTİVİTE PARAMETRELERİNE ETKİLERİ

Year 2021, Volume: 16 Issue: 2, 187 - 199, 17.12.2021

Abstract

Türkiye’de çay yetiştiriciliği sadece mikroklima özelliklere sahip Fatsa ilçesi ile Gürcistan sınırı arasında bulunan sahil şeridinde yapılmaktadır. İklim ve insan faktörleriyle birlikte uzun yıllar monokültür bir şekilde yetiştiricilik yapılması toprakların verimliliğinin azalmasına ve pH’nın düşmesine neden olmuştur. Bu çalışmada, çay budama artıklarının biyokömür olarak değerlendirilmesi ve biyokömür uygulamalarının Karadeniz bölgesi topraklarının pH’larına ve biyolojik aktivitelerine etkilerini araştırmak amaçlanmıştır. Rize ili Merkez ilçe Yeni Kale köyünde bulunan çay bahçelerinden toprak ile çay budama artıkları temin edilmiş ve laboratuvar ortamında 4 aylık inkübasyon denemesi kurulmuştur. Budama artıklarının 300 °C, 400 °C ve 500 °C oksijensiz ortamda prolizi gerçekleştirilmiş ve %0, %0.5 ve %0.1 dozlarında deneme topraklarına uygulanmışlardır. Deneme topraklarında 30 günde bir olmak üzere analizler yapılarak toprak solunumları (CO2 üretimi), üreaz, proteaz, amilaz, beta glukozidaz enzim aktiviteleri, mineral azot (NH4+, NO2- ve NO3-) konsantrasyonları ve toprak pH değerleri tespit edilmiştir. Çalışma sonuçları, çay budama artıklarından elde edilen biyokömür uygulamalarının ortalama değerler itibariyle toprak pH’sını proteaz ve beta glukozidaz enzim aktivitelerini ve mineral azot formlarından NH4+, ve NO3- konsantrasyonlarını arttırabildiğini göstermiştir.

References

  • Alikılıç D (2016). Çay’ın Karadeniz Bölgesi İçin Önemi Ve Tarihi Seyri. Karadeniz İncelemeleri Dergisi, Sayı:21 Sayfalar: 269-280
  • Anonim (2020). Beta-glukozidaz. https://en.wikipedia.org/wiki/Beta-glucosidase Erişim tarihi: 29.07.2020 saat: 00.11
  • Arcak S, Kütük AC, Haktanır K, Çaycı G (1997). Çay Atıklarının Toprakta Enzim Aktivitesi ve Nitrifikasyon Üzerine Etkileri. Pamukkale Üniversitesi Mühendislik Fakültesi Mühendislik Bilimleri Dergisi 3(1):261-266
  • Bai SH, Reverchon F, Xu CY, Xu Z, Blumfield TJ, Zhao H, Van Zwieten L, Wallace HM (2015). Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol Biochem 90:232–240. doi:10.1016/j.soilbio.2015.08.007
  • Bernfeld P (1955). Methods in Enzymology, 1, 149-158. https://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-a-amylase.html
  • Bilen S, Sezen Y (1993). Toprak Reaksiyonunun Bitki Besin Elementleri Elverişliliği Üzerine Etkisi. Atatürk Üniversitesi. Zir. Fak. Der. 24 (2), 156-166.1993.
  • Cao Y, Ma Y, Guo D, Wang Q, Wang G (2017). Sürekli karpuz ekimi altında topraktaki biyokömür ve kompost değişikliklerine kimyasal özellikler ve mikrobiyal tepkiler. Bitki Toprak Çevresi., 63:1-7.
  • Chapin FS, Matson PA, Mooney HA (2002). Principles of terrestrial ecosystem ecology. Springer-Verlag, New York
  • Das SK, Ghosh GK, Mishra VK, Choudhury BU, Dutta SK, Hazarika S, Kalita H, Roy A, Singh NU, Gopi R, Devi EL, Mukherjee I, Balusamy A, Singh M, Yadav A, Kapoor C, Baruah K (2021). Utilizing dissimilar feedstocks derived biochar amendments to alter soil biological indicators in acidic soil of Northeast India. Biomass Conversion and Biorefinery. Springer Nature.
  • DeLuca, TH, MacKenzie MD, Gundale MJ, Holben WE (2006). Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci. Soc. Am. J. 70, 448–453.
  • DEV (1983). Deutsche Einheitsverfahren Zur Wasser-, Abwasser und Schlammuntersuchung (Standard Methods for Water, Wastewater and Sludge Analysis). Fachgruppe Wasserchemie in der Gesellschaft Deutscher Chemiker (ed.) Verlag Chemie, Weinheim / Bergstrasse (BRD).
  • Durmuş ÖTK, Özdemir N, Durmuş M (2020). Organik atık uygulamalarının asit, nötr ve alkali toprakların üreaz enzim aktiviteleri üzerine etkisi. Anadolu Tarım Bilim. Derg./Anadolu J Agr Sci, 35
  • Erdal İ, Memici M, Ekinci K, Sukuşu E (2019). Effects of tomato harvest residue derived biochars obtained from different pyrolysis temperature on periodical available nutrient concentrations of soils. Mediterranean Agricultural Sciences, Cilt: 32 Sayı: Özel Sayı, 75-78. DOI: 10.29136/mediterranean.558306
  • Evans SE, Burke IC (2013). Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems, 16: 20-33.
  • Eyüpoğlu F (1999). Türkiye Topraklarının Verimlilik Durumu. T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü, Toprak ve Gübre Araş. Ens. Yayınları, Genel Yayın No: 220, Teknik Yayın No: T-67, Ankara, sayfa: 122.
  • Fabig W, Ottow JCG, Muller F (1978). Mineralisation von 14C-markiertem benzoat mit Nitrat als wasserstoff-Akzeptor unter vollständig anaeroben Bedingungen sowie bei verminderten Sauerstoffpartialdruck. Landwitsch. Forsch, 35: 441-453.
  • Glaser B, Lehmann J, Zech W (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and Fertility of Soils, 35, 219–230.
  • Haddaway NR, Hedlund K, Jackson LE, Katterer T, Lugato E, Thomsen IK, Jorgensen HB, Isberg PE (2016). How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 5 (1): 1-8
  • Haktanır K, Arcak S (1997). Toprak Biyolojisi. Ankara. Ank. Üni. Zir. Fak. Yayınları. 1486.
  • Hayano K (1973). A Method for the determination of beta glicosidase activity in soil. Soil Sci. Pl. Nutr. 19, 103 - 108.
  • Hofmann E, Hoffmann, G (1966). Die Bestimmug der Biologischen Tatigheit in Böden Mit Enzymethoden. Reprinted From Advances in Enzymolgy and Related Subject of Biochemistry, (28), 365 - 390.
  • Kamimura Y, Hayano K (2000). Properties of protease extracted from tea-field soil. Springer-Verlag. Biol Fertil Soils (2000) 30:351–355
  • Kızılkaya R, Arcak S, Horuz A, Karaca A (1998). Çeltik tarımı yapılan toprakların enzim aktiviteleri üzerine toprak özelliklerinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 4(3): 797-804.
  • Kowalenko CG, Ivarson KC (1978). Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biology and Biochemistry, 10(5): 417-423.
  • Ladd JN, Butler JHA (1972) Properties of proteolytic enzymes extracted from soil. Soil Biol Biochem 4: 227–237
  • Lee J, Hopmans JW, Van-Kessel C, King AP, Evatt KJ, Louie D, Rolston DE, Six J (2009). Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agr. Ecosystems & Environment, 129(4): 378-390.
  • Liu X, Li Q, Liang W, Jiang Y (2008). Distribution of Soil Enzyme Activities and Microbial Biomass Along a Latitudinal Gradient in Farmlands of Songliao Plain, Northeast China. Soil Science Society of China Published by Elsevier Limited and Science Press. 18(4): 431–440.
  • Markosyan LV, Galstyan AH (1963). Optimum pH of some hydrolases of soil. Isv. Akad. Nauk. Arm. SSR. Biol. Nauki. 16, 45 - 52.
  • May PB, Douglas LA (1976). Assay for soil urease activity. Plant Soil 45: 301-305.
  • Mayaudon J, Batistic L, Sarkar J (1975). Propriétés des activités proteo-lytiques extraites des sols frais. Soil Biol Biochem 7:281–286
  • Morril LG, Dowson JE (1962). Growth rates of nitrifying chemoautotrophs İn soiI. Jour Bacteriologia. 16: 418-428.
  • Özyazıcı MA, Dengiz O, Aydoğan M (2013). Çay Yetiştirilen Tarım Topraklarının Reaksiyon Değişimleri ve Alansal Dağılımları. Toprak Su Dergisi, Cilt:2 Sayı:1 Sayfalar: 23-29
  • Persson T, Wiren A (1989). Microbial activity in forest soils in relation to acid/base and carbon/nitrogen status. In Air Pollution as Stress Factor in Nordic Forests (F. N. Braekke, K. Bjor and B. Halvorsen, Eds), pp. 83-95.
  • Pettit NM, Smith ARJ, Frredman RB, Burns RG (1976). Soil urease: activity, stability and kinetic properties. Soil Biol. Biochem. 8: 479-484
  • Prather RJ, Myamoto S (1974). Nitric oxide sorption by calcareous soils: III. Effect of temperature and lack of oxygen on capacity and rate. Soil Science Society of America Proceedings 38, 582–585
  • Rastogi M, Singh S, Pathak H (2002). Emission of carbon dioxide from soil. Current science, 82(5): 510-517.
  • Ross DS, Hales HC (2003). Sampling-induced increases in net nitrification in the Brush Brook (Vermont) watershed. Soil Sci. Soc. Am. J. 67, 318–326
  • Samater AH, Van Cleemput O (1999). Formation of nitrous oxide in the presence of nitrite and organic plant residue in soil. MededelingenFaculteit Landboukudige en Toegepaste Biologische Wetenschappen, Universiteit Gent 64, 11–24.
  • Schmidt MWI, Noack AG (2000). Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14, 777–793.
  • Sezen Y (1991). Toprak Kimyası. Atatürk Üni. Ziraat Fak. Yay. No : 127, 120-122.
  • Sitaula BK, Bakken LR, Abrahamsen G (1995). N-fertilization and soil acidification effects on N2O and CO2 emission from temperate pine forest soil. Soil Biology and Biochemistry, 27(11): 1401-1408.
  • Smith CJ, Chalk PM (1979). Mineralization of nitrite fixed by soil organic matter. Soil Biology & Biochemistry 11, 515–519.
  • Smith CJ, Chalk PM (1980). Fixation and loss of nitrogen during transformations of nitrite in soils. Soil Science Society of America Journal 44, 288–291.
  • Sümer SK, Yasemin K, Gıyasettin Ç (2016). Türkiye’de Tarımsal ve Hayvansal Atıklardan Biyokömür Üretim Potansiyelinin Belirlenmesi KSÜ Doğa Bil. Derg. Sayı: 19(4), Sayfalar: 379-387.
  • Takeuchi M, Hayano K (1994). Characterization of a protease component extracted from a paddy soil under monoculture of rice. Soil Sci Plant Nutr 40: 691–695
  • Torun E, Taluğ C (2005). Çay Budama Projesi Kapsamında Üreticilerin Kullandıkları Bilgi Kaynakları Tarım Ekonomisi Dergisi 2005; Sayı:11(1) Sayfalar: 41 – 49.
  • Tosun F, Manga I, Altın M, Serin Y (1975). A research on arid rangeland improvement in Erzurum conditions. TUBITAK V. Science Congress. Agriculture and Forestry Group.
  • Tsikas D (2007). Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. Journal of Chromatography B, 851: 51–70.
  • TUİK (2019). https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr Erişim Tarihi: 03/05/2020 Erişim Saati:03.33
  • Tuncer K (2016). Batı Karadeniz Bölgesinde Yayılış Gösteren Bazı Orman Topluluklarının Topraklarında Azot Mineralleşme Potansiyelleri Üzerinde Araştırmalar (Yüksek Lisans Tezi) Uludağ Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı
  • Turner BL, Hopkins DW, Haygarth PM, Ostle N (2002). Beta-Glucosidase activity in pasture soils. Applied Soil Ecology 20 (2002) 157–162
  • Ünal H, Başkaya, HS (1981). Toprak: Kimyası. Ankara Üniversitesi. Ziraat Fak. Yay No: 759, 144-232.
  • Wang X, Zhou W, Liang G, Song D, Zhang X (2015). Characteristics of maize biochar with different pyrolysis temperaturesand its effects on organic carbon, nitrogen and enzymatic activities afteraddition tofluvo-aquic soil. Science of the Total Environment. 538 (2015) 137-144.
  • Wang Z, Zong H, Zheng H, Liu G, Chen L, Xing B (2015). Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere 138, 576e583
  • Watanabe K, Hayano K (1994). Source of soil protease based on the splitting sites of a polypeptide. Soil Science and Plant Nutrition Volume 40, 1994 - Issue 4
  • Watanabe K, Hayano K (1996) Seasonal variation in extracted proteases and relationship to overall soil protease and exchangeable ammonia in paddy soils. Biol Fertil Soils 21:89–94
  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil, Chemosphere, Volume 89, Issue 11, Pages 1467-1471.
  • Zhao X, Xing G (2009). Variation in the relationship between nitrification and acidification of subtropical soils as affected by the addition of urea or ammonium sulfate. Soil Biol. Biochem. 41, 2584–2587.

THE EFFECT OF BIOCHAR APPLICATIONS ON THE pH OF THE BLACK SEA REGION SOIL AND THE BIOLOGICAL ACTIVITY PARAMETERS

Year 2021, Volume: 16 Issue: 2, 187 - 199, 17.12.2021

Abstract

Tea plant cultivation in Turkey is carried out only on the coastline located between the town of Fatsa and the Georgian border which has microclimatic features. For many years, monoculture cultivation, together with climate and human factors, soil fertility has been threatened and caused a decrease in soil pH. In this study, it was aimed to evaluate the effects of biochar that obtained from tea pruning residues on soil pH and biological activities of the soils of the Black Sea region. Experimental soil and tea pruning residues were obtained from the tea gardens in the central district of Rize, Yeni Kale village, and a 4-month incubation experiment was established as the laboratory experiment. The pruning residues were subject to pyrolysis at 300 °C, 400 °C, and 500 °C in an oxygen-free environment and incorporated into the soil at 0, 0.5% and 0.1% rates. Every 30 days, soil samples were taken and soil respiration rate (CO2 formation), urease, protease, amylase, beta glucosidase enzyme activities, mineral nitrogen (NH4+, NO2- and NO3-) concentrations and soil pH were determined. The results of the study revealed that biochar applications obtained from tea pruning residues may increase soil pH, protease and beta glucosidase enzyme activities, and mineral nitrogen forms as NH4+, and NO3- concentrations, in terms of average values.

References

  • Alikılıç D (2016). Çay’ın Karadeniz Bölgesi İçin Önemi Ve Tarihi Seyri. Karadeniz İncelemeleri Dergisi, Sayı:21 Sayfalar: 269-280
  • Anonim (2020). Beta-glukozidaz. https://en.wikipedia.org/wiki/Beta-glucosidase Erişim tarihi: 29.07.2020 saat: 00.11
  • Arcak S, Kütük AC, Haktanır K, Çaycı G (1997). Çay Atıklarının Toprakta Enzim Aktivitesi ve Nitrifikasyon Üzerine Etkileri. Pamukkale Üniversitesi Mühendislik Fakültesi Mühendislik Bilimleri Dergisi 3(1):261-266
  • Bai SH, Reverchon F, Xu CY, Xu Z, Blumfield TJ, Zhao H, Van Zwieten L, Wallace HM (2015). Wood biochar increases nitrogen retention in field settings mainly through abiotic processes. Soil Biol Biochem 90:232–240. doi:10.1016/j.soilbio.2015.08.007
  • Bernfeld P (1955). Methods in Enzymology, 1, 149-158. https://www.sigmaaldrich.com/technical-documents/protocols/biology/enzymatic-assay-of-a-amylase.html
  • Bilen S, Sezen Y (1993). Toprak Reaksiyonunun Bitki Besin Elementleri Elverişliliği Üzerine Etkisi. Atatürk Üniversitesi. Zir. Fak. Der. 24 (2), 156-166.1993.
  • Cao Y, Ma Y, Guo D, Wang Q, Wang G (2017). Sürekli karpuz ekimi altında topraktaki biyokömür ve kompost değişikliklerine kimyasal özellikler ve mikrobiyal tepkiler. Bitki Toprak Çevresi., 63:1-7.
  • Chapin FS, Matson PA, Mooney HA (2002). Principles of terrestrial ecosystem ecology. Springer-Verlag, New York
  • Das SK, Ghosh GK, Mishra VK, Choudhury BU, Dutta SK, Hazarika S, Kalita H, Roy A, Singh NU, Gopi R, Devi EL, Mukherjee I, Balusamy A, Singh M, Yadav A, Kapoor C, Baruah K (2021). Utilizing dissimilar feedstocks derived biochar amendments to alter soil biological indicators in acidic soil of Northeast India. Biomass Conversion and Biorefinery. Springer Nature.
  • DeLuca, TH, MacKenzie MD, Gundale MJ, Holben WE (2006). Wildfire-produced charcoal directly influences nitrogen cycling in ponderosa pine forests. Soil Sci. Soc. Am. J. 70, 448–453.
  • DEV (1983). Deutsche Einheitsverfahren Zur Wasser-, Abwasser und Schlammuntersuchung (Standard Methods for Water, Wastewater and Sludge Analysis). Fachgruppe Wasserchemie in der Gesellschaft Deutscher Chemiker (ed.) Verlag Chemie, Weinheim / Bergstrasse (BRD).
  • Durmuş ÖTK, Özdemir N, Durmuş M (2020). Organik atık uygulamalarının asit, nötr ve alkali toprakların üreaz enzim aktiviteleri üzerine etkisi. Anadolu Tarım Bilim. Derg./Anadolu J Agr Sci, 35
  • Erdal İ, Memici M, Ekinci K, Sukuşu E (2019). Effects of tomato harvest residue derived biochars obtained from different pyrolysis temperature on periodical available nutrient concentrations of soils. Mediterranean Agricultural Sciences, Cilt: 32 Sayı: Özel Sayı, 75-78. DOI: 10.29136/mediterranean.558306
  • Evans SE, Burke IC (2013). Carbon and nitrogen decoupling under an 11-year drought in the shortgrass steppe. Ecosystems, 16: 20-33.
  • Eyüpoğlu F (1999). Türkiye Topraklarının Verimlilik Durumu. T.C. Başbakanlık Köy Hizmetleri Genel Müdürlüğü, Toprak ve Gübre Araş. Ens. Yayınları, Genel Yayın No: 220, Teknik Yayın No: T-67, Ankara, sayfa: 122.
  • Fabig W, Ottow JCG, Muller F (1978). Mineralisation von 14C-markiertem benzoat mit Nitrat als wasserstoff-Akzeptor unter vollständig anaeroben Bedingungen sowie bei verminderten Sauerstoffpartialdruck. Landwitsch. Forsch, 35: 441-453.
  • Glaser B, Lehmann J, Zech W (2002). Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal – a review. Biology and Fertility of Soils, 35, 219–230.
  • Haddaway NR, Hedlund K, Jackson LE, Katterer T, Lugato E, Thomsen IK, Jorgensen HB, Isberg PE (2016). How does tillage intensity affect soil organic carbon? A systematic review. Environmental Evidence, 5 (1): 1-8
  • Haktanır K, Arcak S (1997). Toprak Biyolojisi. Ankara. Ank. Üni. Zir. Fak. Yayınları. 1486.
  • Hayano K (1973). A Method for the determination of beta glicosidase activity in soil. Soil Sci. Pl. Nutr. 19, 103 - 108.
  • Hofmann E, Hoffmann, G (1966). Die Bestimmug der Biologischen Tatigheit in Böden Mit Enzymethoden. Reprinted From Advances in Enzymolgy and Related Subject of Biochemistry, (28), 365 - 390.
  • Kamimura Y, Hayano K (2000). Properties of protease extracted from tea-field soil. Springer-Verlag. Biol Fertil Soils (2000) 30:351–355
  • Kızılkaya R, Arcak S, Horuz A, Karaca A (1998). Çeltik tarımı yapılan toprakların enzim aktiviteleri üzerine toprak özelliklerinin etkisi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. 4(3): 797-804.
  • Kowalenko CG, Ivarson KC (1978). Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biology and Biochemistry, 10(5): 417-423.
  • Ladd JN, Butler JHA (1972) Properties of proteolytic enzymes extracted from soil. Soil Biol Biochem 4: 227–237
  • Lee J, Hopmans JW, Van-Kessel C, King AP, Evatt KJ, Louie D, Rolston DE, Six J (2009). Tillage and seasonal emissions of CO2, N2O and NO across a seed bed and at the field scale in a Mediterranean climate. Agr. Ecosystems & Environment, 129(4): 378-390.
  • Liu X, Li Q, Liang W, Jiang Y (2008). Distribution of Soil Enzyme Activities and Microbial Biomass Along a Latitudinal Gradient in Farmlands of Songliao Plain, Northeast China. Soil Science Society of China Published by Elsevier Limited and Science Press. 18(4): 431–440.
  • Markosyan LV, Galstyan AH (1963). Optimum pH of some hydrolases of soil. Isv. Akad. Nauk. Arm. SSR. Biol. Nauki. 16, 45 - 52.
  • May PB, Douglas LA (1976). Assay for soil urease activity. Plant Soil 45: 301-305.
  • Mayaudon J, Batistic L, Sarkar J (1975). Propriétés des activités proteo-lytiques extraites des sols frais. Soil Biol Biochem 7:281–286
  • Morril LG, Dowson JE (1962). Growth rates of nitrifying chemoautotrophs İn soiI. Jour Bacteriologia. 16: 418-428.
  • Özyazıcı MA, Dengiz O, Aydoğan M (2013). Çay Yetiştirilen Tarım Topraklarının Reaksiyon Değişimleri ve Alansal Dağılımları. Toprak Su Dergisi, Cilt:2 Sayı:1 Sayfalar: 23-29
  • Persson T, Wiren A (1989). Microbial activity in forest soils in relation to acid/base and carbon/nitrogen status. In Air Pollution as Stress Factor in Nordic Forests (F. N. Braekke, K. Bjor and B. Halvorsen, Eds), pp. 83-95.
  • Pettit NM, Smith ARJ, Frredman RB, Burns RG (1976). Soil urease: activity, stability and kinetic properties. Soil Biol. Biochem. 8: 479-484
  • Prather RJ, Myamoto S (1974). Nitric oxide sorption by calcareous soils: III. Effect of temperature and lack of oxygen on capacity and rate. Soil Science Society of America Proceedings 38, 582–585
  • Rastogi M, Singh S, Pathak H (2002). Emission of carbon dioxide from soil. Current science, 82(5): 510-517.
  • Ross DS, Hales HC (2003). Sampling-induced increases in net nitrification in the Brush Brook (Vermont) watershed. Soil Sci. Soc. Am. J. 67, 318–326
  • Samater AH, Van Cleemput O (1999). Formation of nitrous oxide in the presence of nitrite and organic plant residue in soil. MededelingenFaculteit Landboukudige en Toegepaste Biologische Wetenschappen, Universiteit Gent 64, 11–24.
  • Schmidt MWI, Noack AG (2000). Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14, 777–793.
  • Sezen Y (1991). Toprak Kimyası. Atatürk Üni. Ziraat Fak. Yay. No : 127, 120-122.
  • Sitaula BK, Bakken LR, Abrahamsen G (1995). N-fertilization and soil acidification effects on N2O and CO2 emission from temperate pine forest soil. Soil Biology and Biochemistry, 27(11): 1401-1408.
  • Smith CJ, Chalk PM (1979). Mineralization of nitrite fixed by soil organic matter. Soil Biology & Biochemistry 11, 515–519.
  • Smith CJ, Chalk PM (1980). Fixation and loss of nitrogen during transformations of nitrite in soils. Soil Science Society of America Journal 44, 288–291.
  • Sümer SK, Yasemin K, Gıyasettin Ç (2016). Türkiye’de Tarımsal ve Hayvansal Atıklardan Biyokömür Üretim Potansiyelinin Belirlenmesi KSÜ Doğa Bil. Derg. Sayı: 19(4), Sayfalar: 379-387.
  • Takeuchi M, Hayano K (1994). Characterization of a protease component extracted from a paddy soil under monoculture of rice. Soil Sci Plant Nutr 40: 691–695
  • Torun E, Taluğ C (2005). Çay Budama Projesi Kapsamında Üreticilerin Kullandıkları Bilgi Kaynakları Tarım Ekonomisi Dergisi 2005; Sayı:11(1) Sayfalar: 41 – 49.
  • Tosun F, Manga I, Altın M, Serin Y (1975). A research on arid rangeland improvement in Erzurum conditions. TUBITAK V. Science Congress. Agriculture and Forestry Group.
  • Tsikas D (2007). Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: Appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. Journal of Chromatography B, 851: 51–70.
  • TUİK (2019). https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr Erişim Tarihi: 03/05/2020 Erişim Saati:03.33
  • Tuncer K (2016). Batı Karadeniz Bölgesinde Yayılış Gösteren Bazı Orman Topluluklarının Topraklarında Azot Mineralleşme Potansiyelleri Üzerinde Araştırmalar (Yüksek Lisans Tezi) Uludağ Üniversitesi Fen Bilimleri Enstitüsü Biyoloji Anabilim Dalı
  • Turner BL, Hopkins DW, Haygarth PM, Ostle N (2002). Beta-Glucosidase activity in pasture soils. Applied Soil Ecology 20 (2002) 157–162
  • Ünal H, Başkaya, HS (1981). Toprak: Kimyası. Ankara Üniversitesi. Ziraat Fak. Yay No: 759, 144-232.
  • Wang X, Zhou W, Liang G, Song D, Zhang X (2015). Characteristics of maize biochar with different pyrolysis temperaturesand its effects on organic carbon, nitrogen and enzymatic activities afteraddition tofluvo-aquic soil. Science of the Total Environment. 538 (2015) 137-144.
  • Wang Z, Zong H, Zheng H, Liu G, Chen L, Xing B (2015). Reduced nitrification and abundance of ammonia-oxidizing bacteria in acidic soil amended with biochar. Chemosphere 138, 576e583
  • Watanabe K, Hayano K (1994). Source of soil protease based on the splitting sites of a polypeptide. Soil Science and Plant Nutrition Volume 40, 1994 - Issue 4
  • Watanabe K, Hayano K (1996) Seasonal variation in extracted proteases and relationship to overall soil protease and exchangeable ammonia in paddy soils. Biol Fertil Soils 21:89–94
  • Yao Y, Gao B, Zhang M, Inyang M, Zimmerman AR (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil, Chemosphere, Volume 89, Issue 11, Pages 1467-1471.
  • Zhao X, Xing G (2009). Variation in the relationship between nitrification and acidification of subtropical soils as affected by the addition of urea or ammonium sulfate. Soil Biol. Biochem. 41, 2584–2587.
There are 58 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Research
Authors

Abdullah Arın 0000-0003-1545-5449

Ali Coşkan 0000-0001-5473-3515

Publication Date December 17, 2021
Submission Date September 29, 2021
Acceptance Date November 11, 2021
Published in Issue Year 2021 Volume: 16 Issue: 2

Cite

APA Arın, A., & Coşkan, A. (2021). BİYOKÖMÜR UYGULAMALARININ KARADENİZ BÖLGESİ TOPRAĞININ pH’SINA ve BAZI BİYOLOJİK AKTİVİTE PARAMETRELERİNE ETKİLERİ. Ziraat Fakültesi Dergisi, 16(2), 187-199.