INFLUENCE OF MILD STEEL PARTICLES ON THE PHYSICAL AND MECHANICAL CHARACTERISTICS OF CERAMIC MATRIX COMPOSITES
Year 2022,
Volume: 5 Issue: 1, 9 - 17, 28.06.2022
Stephen Durowaye
,
Samuel Alao
,
Oluwatomisin Awotunde
,
Diana Kanu
Abstract
Micro particles of mild steel, silicon carbide, magnesia and bentonite were employed as input materials in the development of ceramic composites by powder metallurgy method. Varied formulations were used in producing the samples and they were characterised. The samples demonstrated desirable characteristics. Sample D containing 12 wt. % of mild steel particles exhibited density of 1.78 g/cm3, water absorption of 0.3 %, hardness of 137.15 BHN, compressive strength of 146.38 MPa, and impact energy of 6.64 J. Proper blending of constituent materials and strong bonding enhanced the characteristics of the composites. The results indicated the suitability of the composite for use in fields that require high compressive strength and hardness.
References
- Tarabay, J., Peres, V., Serris, E., Valdivieso, F., Pijolat M. (2013). Zirconia matrix composite dispersed with stainless steel particles: processing and oxidation behaviour. Elsevier, Journal of the European Ceramic Society vol. 33, p. 1101-1110.
- Choudary ,R.B. (2007). Materials Science and Metallurgy. Khanna Publishers, 2B, Nath Market, Nai Sarak, Delhi, India.
- Randelovic, M.S., Zarubica, A.R., Purenovic, M.M. (2012). New composite materials in the technology for drinking water purification from ıonic and colloidal pollutants, from http://dx.doi.org/10.5772/48390, accessed on 2011-06-20.
- Callister, W.D., Balasubramaniam, R. (2011). Materials Science and Engineering, 7th Edition, Wiley India Pvt. Ltd., 4435-36/7, ISBN 978-81-265-2143-2, New Delhi-110002, India.
- Konopka, K., Maj, M., Kurzydlowski, K.J. (2003). Studies of the effect of metal particles on the fracture toughness of ceramic matrix composites. Elsevier, Materials Characterization vol. 51, p. 335-340.
- Aigbodion, V.S., Agunsoye, J.O., Kalu, V., Asuke, F., Ola, S. (2010). Microstructure and mechanical properties of ceramic composites. Journal of Minerals & Materials Characterization & Engineering vol. 9, no. 6, p. 527-538.
- Oungkulsolmongkol, T., Salee-Art, P., Buggakupta, W. (2010). Hardness and fracture toughness of alumina-based particulate composites with zirconia and strontia additives. Journal of Metals, Materials and Minerals vol. 20, no. 2, p. 71-78.
- Asif, M., Chandra, K., Misra, P.S. (2011). Development of ıron based brake friction materials by hot preform forging technique used for medium to heavy duty applications. Journal of Minerals and Materials Characterisation and Engineering vol. 10, no. 3, p. 231-244.
- Olabisi, A.I., Ademoh, N.A., Okechukwu, O.M. (2016). Development and assessment of composite brake pad using pulverized cocoa beans shells filler. International Journal of Materials Science and Applications vol. 5, no. 2, p. 66-78.
- Mat-Shayuti, M.S., Abdullah, M.Z., Megat-Yusoff, P.S.M. (2013). Water absorption properties and morphology of polypropylene/polycarbonate/polypropylene-graft-maleic anhydride blends. Asian Journal of Scientific Research vol. 6, no. 2, p. 167-176.
- Pantyukhov, P., Kolesnikova, N., Anatoly, P. (2016). Preparation, structure, and properties of biocomposites based on low-density polyethylene and lignocellulosic fillers. Polymer Composites vol. 37, p. 1461–1472.
- Aku, S. Y., Yawas, D.S., Madakson, P.B., Amaren, S.G. (2012). Characterisation of periwinkle shell as asbestos-free brake pad materials. Pacific Journal of Science and Technology vol. 13, no. 2, p. 57-63.
Year 2022,
Volume: 5 Issue: 1, 9 - 17, 28.06.2022
Stephen Durowaye
,
Samuel Alao
,
Oluwatomisin Awotunde
,
Diana Kanu
References
- Tarabay, J., Peres, V., Serris, E., Valdivieso, F., Pijolat M. (2013). Zirconia matrix composite dispersed with stainless steel particles: processing and oxidation behaviour. Elsevier, Journal of the European Ceramic Society vol. 33, p. 1101-1110.
- Choudary ,R.B. (2007). Materials Science and Metallurgy. Khanna Publishers, 2B, Nath Market, Nai Sarak, Delhi, India.
- Randelovic, M.S., Zarubica, A.R., Purenovic, M.M. (2012). New composite materials in the technology for drinking water purification from ıonic and colloidal pollutants, from http://dx.doi.org/10.5772/48390, accessed on 2011-06-20.
- Callister, W.D., Balasubramaniam, R. (2011). Materials Science and Engineering, 7th Edition, Wiley India Pvt. Ltd., 4435-36/7, ISBN 978-81-265-2143-2, New Delhi-110002, India.
- Konopka, K., Maj, M., Kurzydlowski, K.J. (2003). Studies of the effect of metal particles on the fracture toughness of ceramic matrix composites. Elsevier, Materials Characterization vol. 51, p. 335-340.
- Aigbodion, V.S., Agunsoye, J.O., Kalu, V., Asuke, F., Ola, S. (2010). Microstructure and mechanical properties of ceramic composites. Journal of Minerals & Materials Characterization & Engineering vol. 9, no. 6, p. 527-538.
- Oungkulsolmongkol, T., Salee-Art, P., Buggakupta, W. (2010). Hardness and fracture toughness of alumina-based particulate composites with zirconia and strontia additives. Journal of Metals, Materials and Minerals vol. 20, no. 2, p. 71-78.
- Asif, M., Chandra, K., Misra, P.S. (2011). Development of ıron based brake friction materials by hot preform forging technique used for medium to heavy duty applications. Journal of Minerals and Materials Characterisation and Engineering vol. 10, no. 3, p. 231-244.
- Olabisi, A.I., Ademoh, N.A., Okechukwu, O.M. (2016). Development and assessment of composite brake pad using pulverized cocoa beans shells filler. International Journal of Materials Science and Applications vol. 5, no. 2, p. 66-78.
- Mat-Shayuti, M.S., Abdullah, M.Z., Megat-Yusoff, P.S.M. (2013). Water absorption properties and morphology of polypropylene/polycarbonate/polypropylene-graft-maleic anhydride blends. Asian Journal of Scientific Research vol. 6, no. 2, p. 167-176.
- Pantyukhov, P., Kolesnikova, N., Anatoly, P. (2016). Preparation, structure, and properties of biocomposites based on low-density polyethylene and lignocellulosic fillers. Polymer Composites vol. 37, p. 1461–1472.
- Aku, S. Y., Yawas, D.S., Madakson, P.B., Amaren, S.G. (2012). Characterisation of periwinkle shell as asbestos-free brake pad materials. Pacific Journal of Science and Technology vol. 13, no. 2, p. 57-63.