Research Article
BibTex RIS Cite

Origin of a-Seismic Surface Deformations in the Gediz (Alaşehir) Graben

Year 2024, Volume: 67 Issue: 4, 31 - 62, 28.07.2024
https://doi.org/10.25288/tjb.1342834

Abstract

Although there has been no earthquake in the Gediz (Alaşehir) Graben since the 1969 Alaşehir earthquake to cause a surface rupture, serious surface cracks and depressions occur between the Alaşehir and Sarıgöl area. Studies performed in the region have not reached a consensus on whether these deformations are due to tectonic effects or groundwater level changes.

Our research claims to evaluate the 2D vertical and horizontal velocity ratios obtained by using the PS-InSAR technique in the light of geological information and to establish the tectonic model that caused the deformation. For this, Sentinel-1 satellite images between 2015-2023 were used. Accordingly, the deformation rate in the hanging-wall of the Sarıgöl Fault is -26 mm/y and +3 mm/y in the footwall. This means that under the tectonic regime, the Bozdağ Horst is uplifing while the graben is continuously collapsing. The Swath profiles clearly show that the graben border faults directly control the subsidence geometry of the basin. The fact that we obtained 11 mm/y (westward) and 7 mm/y (eastward) horizontal movements in opposite directions in the area of the maximum vertical deformation area indicates that the subsidence occurred with radial bulging in the horizontal plane and in a synformal geometry vertically. That is, the horizontal movement is related to the geometry and type of the southern border faults that directly control the subsidence regime of the basin, rather than the NW-SE directional compression in the region. In addition, the vertical deformations, which increase towards the southern margin and decrease towards the interior of the basin, point that the main graben fault with listric geometry may have been caused by a domino-style reversal in the hanging-wall. The fact that the deformations are not visible from the west of Alaşehir is due to the fact that the Alaşehir and Salihli sub-basins mentioned in the literature are limited by a covered semi-vertical fault. The observations of inconsistencies in vertical velocity and groundwater level changes at some points and the fact that these points are close to surface ruptures caused by the Alaşehir earthquake suggest that a significant part of the deformations occurred under tectonic effects.

As a result, the deformations between Alaşehir and Sarıgöl occurred with a-seismic creep that occurred during the ongoing interseismic phase, in addition to the seismic pulses that developed in the coseismic phase of the 1969 Alaşehir earthquake. Therefore, attributing current deformations to groundwater level changes alone may lead to erroneous modellings. Sudden changes in the groundwater level cause the a-seismic deformation that will occur during the interseismic phase to accelerate the sediment consolidation developed under tectonic control and cause deformations to occur rapidly.

Project Number

Proje Yok

References

  • Abdikan, S., Arıkan, M., Sanli, F. B. & Cakir, Z. (2014). Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environmental Earth Sciences, 71, 4081-4089.
  • Akoğlu, A. M., Jónsson, S., Wang, T., Çakır, Z., Dogan, U., Ergintav, S., … & Emre, Ö. (2018). Evidence for tear faulting from new constraints of the 23 October 2011 Mw 7.1 Van, Turkey, earthquake based on InSAR, GPS, coastal uplift, and field observations. Bulletin of the Seismological Society of America, 108(4), 1929-1946. https://doi.org/10.1785/0120170314
  • Ali, M., Shahzad, M. I., Nazeer, M., Mahmood, I. & Zia, I. (2021). Estimation of surface deformation due to Pasni earthquake using RADAR interferometry. Geocarto International, 36(14), 1630-1645.
  • Ambraseys, N. N. (1988). Engineering Seismology. Earthquake Engineering ve Structural Dynamics, 17, 1-105.
  • Anderson, E. R., Griffin, R. E. & Irwin, D. E. (2016). Implications of different digital elevation models and preprocessing techniques to delineate debris flow inundation hazard zones in El Salvador. Natural Hazard Uncertainty Assessment: Modeling and Decision Support, 167-177.
  • Angelier, J., Dumont, J. F., Karamanderesi, H., Poisson, A., Şimşek, Ş. & Uysal, Ş. (1981). Analyses of fault mechanisms and expansion of southwestern Anatolia since the late Miocene. Tectonophysics, 75(3-4), T1-T9.
  • Arpat, E. ve Bingöl, E. (1969). Ege Bölgesi graben sisteminin gelişimi üzerine düşünceler. Mineral Research and Exploration Institute of Turkey (MTA) Bulletin, 73, 1-8.
  • ASF (Alaska Satellite Facility), 2019. https://search.asf.alaska.edu/#/ , 10 Mart 2019.
  • Aslan, G., Cakir, Z., Lasserre, C. & Renard, F. (2019). Investigating subsidence in the Bursa Plain, Turkey, using ascending and descending Sentinel-1 satellite data. Remote Sensing, 11(1), 85.
  • Asti, R., Malusà, M. G. & Faccenna, C. (2018). Supradetachment basin evolution unravelled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Research, 30(3), 502-521.
  • Barka, A. & Reilinger R. (1997). Active Tectonics of Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali Di Geofisica, X2(3), 587-610.
  • Bayık, C., Abdikan, S., Ozdemir, A., Arıkan, M., Balik Sanli, F. & Doğan, U. (2021). Investigation of the landslides in Beylikdüzü-Esenyurt Districts of Istanbul from InSAR and GNSS observations. Natural Hazards, 109(1), 1201-1220.
  • Bayramov, E., Buchroithner, M., Kada, M. & Zhuniskenov, Y. (2021). Quantitative assessment of vertical and horizontal deformations derived by 3d and 2d decompositions of insar line-of-sight measurements to supplement industry surveillance programs in the tengiz oilfield (Kazakhstan). Remote Sensing, 13(13), 2579.
  • Beccaletto, L. & Steiner, C. (2005). Evidence of two-stage extensional tectonics from the northern edge of the Edremit Graben, NW Turkey. Geodinamica Acta, 18(3-4), 283-297.
  • Bekaert, D. P. S., Walters, R. J., Wright, T. J., Hooper, A. J. & Parker, D. J. (2015). Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment, 170, 40-47.
  • Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions Geoscience and Remote Sensing, 40(11), 2375-2383.
  • Biryol, C. B., Beck, S. L., Zandt, G. & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysics Journal International, 184(3), 1037-1057.
  • Blasco, J.M.D., Foumelis, M., Stewart, C. & Hooper, A. (2019). Measuring urban subsi-dence in the Rome metropolitan area (Italy) with sentinel-1 SNAP-StaMPSpersistent scatterer interferometry. Remote Sensing 11(2), 17.
  • Bodur, Ö., Göğüş, O. H., Brune, S., Uluocak, E. Ş., Glerum, A., Fichtner, A. & Sözbilir, H. (2023). Crustal flow driving twin domes exhumation and low-angle normal faulting in the Menderes Massif of western Anatolia. Earth and Planetary Science Letters, 619, Article 118309.
  • Bozkurt, E. (2000). Timing of Extension on the Büyük Menderes Graben, western Turkey and its tectonic implications. Geological Society London, 173, 385-403.
  • Bozkurt, E. (2001a). Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14, 3-30.
  • Bozkurt, E. (2001b). Late Alpine evolution of the central Menderes Massif, western Turkey. International Journal of Earth Sciences, 89(4), 728-744.
  • Bozkurt, E. (2003). Origin of NE-trending basins in western Turkey. Geodinamica Acta, 16(2-6), 61-81.
  • Bozkurt, E. (2004). Granitoid rocks of the southern Menderes Massif (southwestern Turkey): field evidence for Tertiary magmatism in an extensional shear zone. International Journal of Earth Sciences, 93(1), 52-71.
  • Bozkurt, E. & Rojay, B. (2005). Episodic, two-stage Neogene extension and short-term intervening compression in Western Turkey: field evidence from the Kiraz Basin and Bozdağ Horst. Geodinamica Acta, 18(3-4), 299-316.
  • Bozkurt, E. & Sözbilir, H. (2004). Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey. Geological Magazine, 141(1), 63-79.
  • Bozkurt, E. & Sözbilir, H. (2006). Evolution of the large-scale active Manisa Fault, Southwest Turkey: implications on fault development and regional tectonics. Geodinamica Acta, 19(6), 427-453.
  • Bozkurt, E., Winchester, J. A., Mittwede, S. K. & Ottley, C. J. (2006). Geochemistry and tectonic implications of leucogranites and tourmalines of the southern Menderes Massif, Southwest Turkey. Geodinamica Acta, 19(5), 363-390.
  • Bozzano, F., Carabella, C., De Pari, P., Discenza, M. E., Fantucci, R., Mazzanti, P., …& Sciarra, N. (2019). Geological and geomorphological analysis of a complex landslides system: the case of San Martino sulla Marruccina (Abruzzo, Central Italy). Journal of Maps, 16(2), 123-136. https://doi.org/10.1080/17445647.2019.1702596
  • Buscher, J. T., Hampel, A., Hetzel, R., Dunkl, I., Glotzbach, C., Struffert, A., Akal, C. & Rätz, M. (2013). Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. Journal of the Geological Society, 170(4), 669-683. https://doi.org/10.1144/jgs2012-132
  • Chen, C. W. & Zebker, H. A. (2002). Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709-1719.
  • Cigna, F., Osmanoğlu, B., Cabral-Cano, E., Dixon, T. H., Ávila-Olivera, J. A., Garduño-Monroy, V. H., DeMets, C. & Wdowinski, S. (2012). Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sensing of Environment, 117, 146-161.
  • Çağlayan, A., Isik, V. & Saber, R. (2019). An assessment of Holocene seismic activity on 1944 Earthquake Segment, North Anatolian Fault Zone (Turkey). Geosciences Journal, 23, 805-822.
  • Çakır, Z., Chabalier, J. B. D., Armijo, R., Meyer, B., Barka, A. & Peltzer, G. (2003). Coseismic and early post-seismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations. Geophysical Journal International, 155(1), 93-110.
  • Çelik, H. (1991). Akarsuların (vadi) profil özellikleri ile eski tabanlar arasındaki ilişkiler üzerine araştırmalar. İstanbul Üniversitesi Orman Fakültesi Dergisi, 43(2), 101-130.
  • Çetin, E., Çakır, Z., Meghraoui, M., Ergintav, S. & Akoglu, A. M. (2014). Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochemistry, Geophysics, Geosystems, 15(7), 2883-2894.
  • Çiftçi, N. B. & Bozkurt, E. (2007). Anomalous stress field and active breaching at relay ramps: a field example from Gediz Graben, SW Turkey. Geological Magazine, 144(4), 687-699.
  • Çiftçi, N. B. & Bozkurt, E. (2008) Folding of the Gediz Graben Fill, SW Turkey: Extensional and/or Contractional Origin?. Geodinamica Acta, 21(3), 145-167.
  • Çiftçi, N. B. & Bozkurt, E. (2009a). Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology, 216(3-4), 49-79.
  • Çiftçi, N. B. & Bozkurt, E. (2009b). Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics, 473(1-2), 234-260.
  • Çiftçi, N. B. & Bozkurt, E. (2010). Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin. Basin Research, 22(6), 846-873.
  • Dai, F., Lee, C. & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1): 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X
  • Dănişor, C., Datcu, M. & Dănişor, A. (2018). Estimation of terrain’s linear deformation rates using synthetic aperture radar systems. In IOP Conference Series: Materials Science and Engineering, 400(2), 022018. IOP Publishing.
  • De Novellis, V., Carlino, S., Castaldo, R., Tramelli, A., De Luca, C., Pino, N.A., Pepe, S.; Convertito, V., Zinno, I. & De Martino, P. (2018). The 21 August 2017 Ischia (Italy) earthquake source model inferred from seismological, GPS, and DInSAR measurements. Geophysical Research Letters, 45(5), 2193–2202. https://doi.org/10.1002/2017GL076336
  • Dewey, J. F. & Şengör, A. M. C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 84-92.
  • Dilek, Y., Altunkaynak, S. & Öner, Z. (2009). Syn-extensional granitoids in the Menderes core complex and the late Cenozoic extensional tectonics of the Aegean province. In: Ring, U., Wernicke, B. (Eds.), Extending a Continent: Architecture, Rheology and Heat Budget. Geological Society of London Special Publications, 321, 197-223.
  • Doğan, A., Kaygusuz, Ç., Tiryakioğlu, İ., Yigit, C. O., Sözbilir, H., Özkaymak, Ç. & Turgut, B. (2022). Geodetic evidence for aseismic fault movement on the eastern segment of the Gediz Graben system (western Anatolia extensional province, Turkey) and its significance for settlements. Acta Geodaetica et Geophysica, 57(3), 461-476.
  • Doğru, F. (2020). The Importance of Atmospheric Corrections on InSAR Surveys Over Turkey: Case Study of Tectonic Deformation of Bodrum-Kos Earthquake. Pure and Applied Geophysics, 177(12), 5761-5780.
  • Dumont, J. F., Uysal, S., Şimşek S., Karamanderesi, I. H. ve Letouzcy, F. (1979). Güneybatı Anadolu'daki grabenlerin oluşumu. Maden Tetkik ve Arama Dergisi, 92, 7-17.
  • Elliott, J. R., Walters R. J. & Wright, T. J. (2016). The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nature Communications, 7, Article 13844.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275. https://doi.org/10.1007/s10518-016-0041-2
  • Emre, T. & Sözbilir, H. (2007). Tectonic evolution of the Kiraz Basin, Küçük Menderes Graben: evidence for compression/uplift-related basin formation overprinted by extensional tectonics in West Anatolia. Turkish Journal of Earth Sciences, 16(4), 441-470.
  • Eravcı, B., Erkmen, C., Yaman, M., Tüzel, B. & Iravul, Y. (2009). The Origin of Ground Deformations that Caused Damage at Sarigol-Manisa-Turkey. EGU General Assembly Conference Abstracts, 2655.
  • Erkül, F., Helvacı, C. & Sözbi̇li̇r, H. (2005). Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western Turkey. Geological Journal, 40(5), 545-570.
  • Ersoy, E. Y. & Helvacı, C. (2007). Stratigraphy and geochemical features of the Early Miocene bimodal (ultrapotassic and calc-alkaline) volcanic activity within the NE-trending Selendi Basin, Western Anatolia, Turkey. Turkish Journal of Earth Sciences, 16, 117-139.
  • Ersoy, E. Y., Helvacı, C. & Sözbilir, H. (2010). Tectono-stratigraphic evolution of the NE–SW-trending superimposed Selendi basin: Implications for late Cenozoic crustal extension in Western Anatolia, Turkey. Tectonophysics, 488(1-4), 210-232.
  • Eyidoğan, H. (1988). Rates of crustal deformation in western Turkey as deduced from major earthquakes. Tectonophysics, 148(1-2), 83-92.
  • Eyidoğan, H. & Jackson, J. A. (1985). A seismological study of normal faulting in the Demirci, Alaşehir ve Gediz earthquake of 1969-1970 in western Turkey: implications for the nature and geometry of deformationdeformation in the continental crust. Geophysical Journal of Royal Astronomical Society, 81, 569-607.
  • Fattahi, H. (2015). Geodetic Imaging of Tectonic Deformation With InSAR [PhD Thesis]. University of Miami, Florida.
  • Fernandez, J., Prieto, J. F., Escayo, J., Camacho, A. G., Luzón, F., Tiampo, K. F., … & Mallorquí, J. J. (2018). Modeling the two-and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications. Scientific Reports, 8(1), Article 14782. https://doi.org/10.1038/s41598-018-33128-0
  • Ferretti, A., Prati, C. & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20.
  • Fialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature, 441(7096), 968-971.
  • Forster, M. & Lister, G. (2009). Core-complex-related extension of the Aegean lithosphere initiated at the Eocene-Oligocene transition. Journal of Geophysical Research: Solid Earth, 114(B2). Article B02401. https://doi.org/10.1029/2007JB005382
  • Genç, C. Ş., Altunkaynak, Ş., Karacık, Z., Yazman, M. & Yılmaz, Y. (2001). The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14(1-3), 45-55.
  • Gessner, K., Gallardo, L. A., Markwitz, V., Ring, U. & Thomson, S. N. (2013). What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana research, 24(1), 243-274.
  • Gessner, K., Piazolo, S., Güngör, T., Ring, U., Kroner, A. & Passchier, C.W. (2001a). Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide belt, southwest Turkey. International Journal of Earth Sciences 89, 766-780.
  • Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C.W. & Güngör, T. (2001b). An active bivergent rolling-hinge detachment system: central Menderes metamorphic core complex in western Turkey. Geology, 29, 611-614.
  • Gezgin, C. (2022). The influence of groundwater levels on land subsidence in Karaman (Turkey) using the PS-InSAR technique. Advances in Space Research, 70(11), 3568-3581.
  • Goldstein, R. M., Zebker, H. A. & Werner, C. L. (1988). Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 23, 713-720.
  • Göktaş, F. ve Hakyemez, Y. (2015). Kemalpaşa (İzmir) Pliyo-Kuvaterner Havzasının Stratigrafik Evrimi. Türkiye Jeoloji Bülteni, 58(2), 1-28. https://doi.org/10.25288/tjb.298498
  • Gören, R. (2016). Alaşehir ve çevresinde Gediz grabeni güney kenar faylarının holosen aktivitesi [Yüksek Lisans Tezi]. Eskişehir Osmangazi Üniversitesi, Eskişehir.
  • Gürboğa, Ş. D., Koçyiğit, A. & Ruffet, G. (2013). Episodic two-stage extensional evolutionary model for southwestern Anatolian graben–horst system: new field data from the Erdoğmuş-Yenigediz graben (Kütahya). Journal of Geodynamics, 65, 176-198.
  • Gürer, Ö. F., Sarica-Filoreau, N., Özburan, M., Sangu, E. & Doğan, B. (2009). Progressive development of the Büyük Menderes Graben based on new data, western Turkey. Geological Magazine, 146(5), 652-673.
  • Gürsoy, H., Temiz, H. ve Tatar, O. (1997). Gediz grabeni GD kenarındaki güncel deformasyon verileri. Aktif Tektonik Araştırma Grubu Birinci Toplantısı, İTÜ, İstanbul.
  • Haghighi, M. H. (2019). Local and large scale insar measurement of ground surface deformation [PhD Thesis]. Leibniz Universität Hannover, Hannover.
  • Hancock, P. L. & Barka, A. A. (1987). Kinematic indicators on active normal faults in western Turkey. Journal of Structural Geology, 9(5-6), 573-584.
  • Hastaoğlu, K. O., Poyraz, F., Erdoğan, H., Tiryakioğlu, İ., Özkaymak, Ç., Duman, H. Gül, Y., Guler, S., Dogan, A. & Gul, Y. (2023). Determination of periodic deformation from InSAR results using the FFT time series analysis method in Gediz Graben. Natural Hazards, 117(1), 491-517. https://doi.org/10.1007/s11069-023-05870-w
  • Hetzel, R., Ring, U., Akal, C. & Troesch, M. (1995). Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. Journal of the Geological Society of London, 152, 639-654. https://doi.org/10.1144/gsjgs.152.4.0639
  • Hetzel, R., Romer, R. L., Candan, O. & Passchier, C. W. (1998). Geology of the Bozdağ area, central Menderes massif, SW Turkey: Pan-African basement and Alpine deformation. Geologische Rundschau, 87(3), 394-406.
  • Hodgkinson, K. M. (1996). Crustal deformation in extensional regimes: Iceland, Nevada and SW Turkey. [PhD Thesis]. Durham University, Durham.
  • Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35, L16302.
  • Hooper, A., Bekaert, D., Spaans, K. & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514, 1-13.
  • Hooper, A., Zebker, H., Segall, P. & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31, L23611.
  • Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L. & Sun, Q. (2014). Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133, 1-17.
  • Ingleby, T. & Wright T. J. (2017). Omori-like decay of postseismic velocities following continental earthquakes. Geophysical Research Letters, 44(7), 3119-3130.
  • Innocenti, F., Agostini, S., Di Vincenzo, G., Doglioni, C., Manetti, P., Savaşçin, M. Y. & Tonarini, S. (2005). Neogene and Quaternary volcanism in Western Anatolia: magma sources and geodynamic evolution. Marine Geology, 221(1-4), 397-421. https://doi.org/10.1016/j.margeo.2005.03.016
  • Işık, V. & Tekeli, O. (2001). Late orogenic crustal extension in the northern Menderes massif (western Turkey): evidences for metamorphic core complex formation. International Journal of Earth Sciences, 89, 757-765.
  • Işık, V., Saber, R. & Cağlayan, A. (2021). November 08, 2019 Turkmanchay earthquake (Mw: 5.9) in NW Iran: an assessment of the earthquake using DInSAR time-series and field evidence. Natural Hazards, 105, 3013-3037.
  • İmamoğlu, M., Balik Sanli, F., Cakir, Z. & Kahraman, F. (2022). Rapid ground subsidence in the Küçük Menderes Graben (W. Turkey) captured by Sentinel-1 SAR data. Environmental Earth Sciences, 81(7), 221.
  • İmamoğlu, M., Kahraman, F., Cakir, Z. & Sanli, F. B. (2019). Ground deformation analysis of Bolvadin (W. Turkey) by means of multi-temporal InSAR techniques and Sentinel-1 data. Remote Sensing, 11(9), 1069.
  • Jackson, J. & McKenzie, D. (1988). The relationship between plate motions and seismic moment tensors and rates of active deformation in the Mediterranean and Middle East. Geophysical Journal, 93, 45-73.
  • Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., … & Driussi, O. (2013). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 1-33. https://doi.org/10.1016/j.tecto.2012.06.011
  • Kaya, O., Ünay, E., Saraç, G., Eichhorn, S., Hassenrück, S., Knappe, A., Pekdeğer, A. & Mayda, S. (2004). Halitpaşa Transpressive Zone: Implications for an Early Pliocene Compressional Phase in Central Western Anatolia, Turkey. Turkish Journal of Earth Sciences, 13, 1-13.
  • Kent, E. (2015). The Relationship Between Active Faulting and Fluvial Geomorphology: A Case Study In The Gediz Graben, Turkey [PhD Thesis]. Plymouth University, Plymouth.
  • Ketin, İ. (1968). Relations between general tectonic features and the main earthquake regions of Turkey. Bulletin of the Mineral Research and Exploration, 71(71).
  • Kim, D. J. & Jung, J. (2018). Subsidence in the Kathmandu Basin, before and after the 2015 Mw 7.8 Gorkha Earthquake, Nepal Revealed from Small Baseline Subset-DInSAR Analysis. GIScience & Remote Sensing, 55(4), 604-621.
  • Koca, M. Y., Sözbilir, H. ve Uzel, B. (2011). Sarıgöl fay zonu boyunca meydana gelen deformasyonların nedenleri üzerine bir araştırma. Jeoloji Mühendisliği Dergisi, 35(2), 151-174.
  • Koçman, A. (1985). İzmir-Bozdağlar yöresinin yapısal jeomorfolojisi ve evrimi. Ege Coğrafya Dergisi, 3(1), 63-86.
  • Koçyiğit, A. (1984). Güneybatı Türkiye ve Yakın Dolayında levha içi yeni tektonik gelişim. Türkiye Jeoloji Kurumu Bülteni, 27, 1-16. https://www.jmo.org.tr/resimler/ekler/84b98aac2dddf59_ek.pdf?dergi=T%DCRK%DDYE%20JEOLOJ%DD%20B%DCLTEN%DD
  • Koçyiğit, A., Yusufoğlu, H. & Bozkurt, E. (1999). Evidence from the Gediz graben for episodic two stage extension in western Turkey. Journal of the Geological Society of London, 156, 605-616.
  • Koralay, E., Candan, O., Akal, C., Dora, O. Ö., Chen, F., Satir, M. ve Oberhänsli, R. (2011). Menderes Masifi'ndeki Pan-Afrikan ve Triyas yaşlı metagranitoyidlerin jeolojisi ve jeokronolojisi, Batı Anadolu, Türkiye. Maden Tetkik ve Arama Dergisi, 142, 69-121.
  • Lauknes, T. R., Shanker, A. P., Dehls, J. F., Zebker, H. A., Henderson, I. H. C. & Larsen, Y. (2010). Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sensing of Environment, 114(9), 2097-2109.
  • Le Pichon, X. & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60, 1-42.
  • Le Pichon X., Chamot-Rooke C., Lallemant S., Noomen R. & Veis G. (1995). Geodetic determination of the kinematics of Central Greece with respect to Europe: implications for Eastern Mediterranean tectonics, Journal of Geophysical Research, 100, 12675-12690.
  • Lips, A. L., Cassard, D., Sözbilir, H., Yilmaz, H. & Wijbrans, J. R. (2001). Multistage exhumation of the Menderes massif, western Anatolia (Turkey). International Journal of Earth Sciences, 89(4), 781-792.
  • Maghsoudi, Y., van der Meer, F., Hecker, C., Perissin, D. & Saepuloh, A. (2018). Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia. International Journal of Applied Earth Observation and Geoinformation, 64, 386-396.
  • Massonnet, D., Holzer, T. & Vadon, H. (1997). Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry. Geophysical Research Letters, 24(8), 901-904.
  • McClusky, S. C., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., … & Veis, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695-5719. https://doi.org/10.1029/1999JB900351
  • McKenzie, D. (1978). Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International, 55(1), 217-254.
  • Nocquet, J. M. (2012). Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics, 579, 220-242.
  • Oktar, O., Erdoğan, H., Poyraz, F. & Tiryakioğlu, İ. (2021). Investigation of deformations with the GNSS and PSInSAR methods. Arabian Journal of Geosciences, 14(23), 1-16.
  • Osmanoğlu, B., Sunar, F., Wdowinski, S. & Cabral-Cano, E. (2016). Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 90-102.
  • Öner, Z. & Dilek, Y. (2011). Supradetachment basin evolution during continental extension: The Aegean province of western Anatolia, Turkey. Geological Society of America Bulletin, 123(11-12), 2115-2141.
  • Özkaymak, C. & Sözbilir, H. (2008). Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, western Anatolia. Turkish Journal of Earth Sciences, 17, 615-635.
  • Özkaymak, Ç., Sözbilir, H., Tiryakioğlu, İ. ve Baybura, T. (2017). Bolvadin’de (Afyon-Akşehir Grabeni, Afyon) Gözlenen Yüzey Deformasyonlarının Jeolojik, Jeomorfolojik ve Jeodezik Analizi. Türkiye Jeoloji Bülteni, 60(2), 169-189. https://doi.org/10.25288/tjb.302914
  • Paton, S. (1992). Active normal faulting, drainage patterns and sedimentation in southwestern Turkey. Journal of the Geological Society, London 149, 1031-44.
  • Pawluszek-Filipiak, K. & Borkowski, A. (2020). Integration of DInSAR and SBAS Techniques to determine mining-related deformations using sentinel-1 data: The case study of Rydułtowy mine in Poland. Remote Sensing, 12(2), 242.
  • Poyraz, F. & Hastaoğlu, K. Ö. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian Journal of Geosciences, 13(17), 1-11.
  • Poyraz, F., Hastaoğlu, K. Ö. ve Demirel, M. (2016). Gediz Grabenin Doğu Kesimindeki Tektonik Hareketlerin Envisat Radar Görüntülerini Kullanarak Araştırılması. 8. Ulusal Mühendislik Ölçmeleri Sempozyumu (s.: 1-5). İstanbul.
  • Poyraz, F., Hastaoğlu, K. Ö., Koçbulut, F., Tiryakioğlu, İ., Tatar, O., Demirel, M., … & Sıgırcı, R. (2019). Determination of the block movements in the eastern section of the Gediz Graben (Turkey) from GNSS measurements. Journal of Geodynamics, 123, 38-48. https://doi.org/10.1016/j.jog.2018.11.001
  • Poyraz, F., Tatar, O., Hastaoğlu, K. Ö., Tiryakioğlu, İ., Gürsoy, Ö., Koçbulut, F., … & Gül, D. (2015). Gediz Grabeninin Doğu Kesimindeki Güncel Tektonik Hareketlerin GPS Ve Ps-InSAR Yöntemleri Kullanılarak Belirlenmesi; İlk Sonuçlar. Harita Teknolojileri Elektronik Dergisi, 7(1), 17-28. https://doi.org/10.15659/hartek.15.03.64
  • Price, S. P. & Scott, B. (1994). Fault-block rotations at the edge of a zone of continental extension; southwest Turkey. Journal of Structural Geology, 16(3), 381-392.
  • Purvis, M. & Robertson, A. (2004). A pulsed extension model for the Neogene–Recent E–W-trending Alaşehir Graben and the NE–SW-trending Selendi and Gördes Basins, western Turkey. Tectonophysics, 391(1), 171-201.
  • Purvis, M. & Robertson, A. (2005). Sedimentation of the Neogene–Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sedimentary Geology, 173(1-4), 373-408.
  • Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., … & Campillo, M. (2016). Triggering of the 2014 Mw 7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geoscience, 9(11), 829-833. https://doi.org/10.1038/ngeo2817
  • Reid, H. F. (1910). The mechanics of the earthquake: The California Earthquake of April 18,1906. Carnegie Institute Washington Publication, 87(2), 192.
  • Reilinger, R. E., McClusky, S. C., Oral, M. B., King, R. W., Toksoz, M. N., Barka, A. A., Kinik, I., Lenk, O. & Sanli, I. (1997). GPS measurements of present day crustal movements in the Arabia-Africa-Eurasia plate collision zone. Journal of Geophysical Research, Solid Earth, 102(B5), 9983-9999. https://doi.org/10.1029/96JB03736
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R. … & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, Solid Earth, 111(B5). Article B5411 https://doi.org/10.1029/2005JB004051
  • Ring, U., Johnson, C., Hetzel, R. & Gessner, K. (2003). Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geological Magazine, 140(4), 421-441.
  • Roberts, S. C. (1988). Active normal faulting in Central Greece and Western Turkey [phD Thesis]. University of Cambridge, Cambridge.
  • Rojay, B. (2009). Post-Miocene Deformation in Central Anatolia and its link to Horst and Graben System of Western Anatolia, Turkey. EGU General Assembly Conference Abstracts, 4601.
  • Rojay, B., Demirci, C., Toprak, V. & Özsayın, E. (2019). Superposition of the neotectonic events in a complex multi extensional terrain evolution during post-Miocene in western Anatolia (Gediz-Alaşehir Graben, western Turkey). Geophysical Research Abstracts, (21).
  • Rojay, B., Toprak, V., Demirci, C. & Süzen, L. (2005). Plio-quaternary evolution of the Küçük Menderes graben southwestern Anatolia, Turkey. Geodinamica Acta, 18(3-4), 317-331.
  • Rosen, P. A., Hensley, S., Zebker, H. A., Webb, F. H. & Fielding, E. J. (1996). Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR‐C radar interferometry. Journal of Geophysical Research: Planets, 101(E10), 23109-23125.
  • Saatçılar, R., Ergintav, S., Demirbaǧ, E. & İnan, S. (1999). Character of active faulting in the North Aegean Sea. Marine Geology, 160(3-4), 339-353.
  • Saber, R., Isik, V., Caglayan, A. & Tourani, M. (2023). Sentinel-1 InSAR observations and time-series analysis of co-and postseismic deformation mechanisms of the 2021 Mw 5.8 Bandar Ganaveh Earthquake, Southern Iran. Journal of Mountain Science, 20(4), 911-927.
  • Sangu, E., Gürer, Ö. F. & Gürer, A. (2020). Fault kinematic and Plio-Quaternary paleostress evolution of the Bakırçay basin, western Turkey. International Geology Review, 62(10), 1245-1261.
  • Sarychikhina, O. & Glowacka, E. (2015). Application of DInSAR Stacking Method for Monitoring of Surface Deformation Due to Geothermal Fluids Extraction in the Cerro Prieto Geothermal Field, Baja California, Mexico. Proceedings World Geothermal Congress 2015 (WGC) (pp. 19-25).
  • Savaşçın, M. Y., Giese, L. B., Kaya, O., Pekdeğer, A. & Woith, H. (1999). An example for the optimal use of geothermal energy-the integrated development project for Kula, West Anatolia. International Symposium on Geology and Environment, Istanbul.
  • Seyitoğlu, G. & Scott, B. C. (1991). Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128(2), 155-166.
  • Seyitoğlu, G. & Scott, B. C. (1994). Late Cenozoic basin development in west Turkey: Gördes basin tectonics and sedimentation. Geological Magazine, 131(5), 631-637.
  • Seyitoğlu, G. & Scott, B. C. (1996). The age of Alaşehir Graben (west Turkey) and its tectonic implications. Geological Journal, 31(1), 1-11.
  • Seyitoğlu, G., Scott, B. C. & Rundle, C. C. (1992). Timing of Cenozoic extensional tectonics in west Turkey. Journal of the Geological Society, 149(4), 533-538.
  • Seyitoğlu, G., Tekeli, O., Çemen, İ., Şen, Ş. & Işık, V. (2002). The role of the flexural rotation/rolling hinge model in the tectonic evolution of the Alaşehir graben, western Turkey. Geological Magazine, 139, 15-26.
  • Shahabi, H. & Hashim, M. (2015). Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific reports, 5(1), 9899.
  • Shanker, P., Casu, F., Zebker, H. A. & Lanari, R. (2011). Comparison of persistent scatterers and small baseline time-series InSAR results: A case study of the San Francisco bay area. IEEE Geoscience and Remote Sensing Letters, 8(4), 592-596.
  • Sözbilir, H. (2001). Extensional tectonics the geometry of related macroscopic structures: Field evidence from the Gediz detachment, western Turkey. Turkish Journal of Earth Science, 10, 51-67.
  • Sözbilir H. (2002). Revised stratigraphy and facies analysis of the Palaeocene-Eocene supra-allochthonous sediments and their tectonic significance (Denizli, SW Turkey). Turkish Journal of Earth Sciences, 11, 1-27.
  • Sözbilir, H., Erkül, F. & Sümer, Ö. (2003a). Field evidence for post-Miocene NE-trending accomodation zone lying between Gümüldür (İzmir) and Bigadiç (Balıkesir), west Anatolia. 56. Geological Congress of Turkey, 85-86.
  • Sözbilir, H., İnci, U., Erkül, F. & Sümer, Ö. (2003b). An active intermittent transfer zone accommodating N–S extension in western Anatolia and its relation to the North Anatolian fault system. International Workshop on the North Anatolian, East Anatolian and Dead Sea Fault Systems: Recent Progress in Tectonics and Palaeo-seismology and Field Training Course in Palaeoseismology, 87.
  • Sözbilir, H., Uzel, B., Sümer, Ö., Eski, S., Softa M., Tepe, Ç., Özkaymak, Ç. ve Baba, A. (2018). Çanakkale-Ayvacık Deprem Fırtınasının (14 Ocak-20 Mart 2017) Sismik Kaynakları. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler, 6, 1-17.
  • Sümer, Ö., İnci, U. & Sözbilir, H. (2013). Tectonic evolution of the Söke Basin: extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben, Western Anatolia, Turkey. Journal of Geodynamics, 65, 148-175.
  • Şaroğlu, F. ve Güler, B. (2020). Batı Anadolu Tektonik Kaması’nın güncel deformasyonu: batıya doğru kaçıştan kaynaklanan blok hareketleri. Türkiye Jeoloji Bülteni, 63(2), 161-194. https://doi.org/10.25288/tjb.593423
  • Şengör, A. M. C. (1979). The North Anatolian Transform Fault: its age, offset and tectonic significance. Geological Society of London, 136, 269-282.
  • Şengör, A. M. C. (1987). Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: examples from western Turkey. Geological Society London, 28, 575-589.
  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, In K. Biddle, N. Christie-Blick (Eds), Strike-slip Deformation, Basin Formation and Sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publications 37, 227-264.
  • Şimşek, C. ve Demirkesen, A. C. (2022). Kısa Dönem Kuyu İzlem Verilerine Göre Yeraltısuyu Besleniminin Belirlenmesi, Alaşehir (Manisa) Örneği. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(70), 91-104.
  • Tatar, O., Sözbilir, H., Koçbulut, F., Bozkurt, E., Aksoy, E., Eski, S., … & Metin, Y. (2020). Surface deformations of 24 January 2020 Sivrice (Elazığ)–Doğanyol (Malatya) earthquake (Mw= 6.8) along the Pütürge segment of the East Anatolian Fault Zone and its comparison with Turkey’s 100-year-surface ruptures. Mediterranean Geoscience Reviews, 2(3), 385-410. https://doi.org/10.1007/s42990-020-00037-2
  • Taymaz, T., Ganas, A., Berberian, M., Eken, T., Irmak, T. S., Kapetanidis, V., … & Özkan, B. (2022). The 23 February 2020 Qotur-Ravian earthquake doublet at the Iranian-Turkish border: Seismological and InSAR evidence for escape tectonics. Tectonophysics, 838. Article 229482. https://doi.org/10.1016/j.tecto.2022.229482
  • Taymaz, T., Jackson, J. & McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2), 433-490.
  • Taymaz, T., Yilmaz, Y. & Dilek, Y. (2007). The geodynamics of the Aegean and Anatolia: introduction. Geological Society, London, Special Publications, 291(1), 1-16.
  • Tekin, T., Sançar, T. & Rojay, B. (2022). A new set of overprinting slip-data along Manisa Fault in Aegean Extensional Province, Western Anatolia. EGU22-452, Copernicus Meetings.
  • Temiz, H., Gürsoy, H. & Tatar, O. (1998). Kinematics of late pliocene-quaternary normal faulting in the southeastern end of the Gediz graben, Western Anatolia, Turkey. International Geology Review, 40(7), 638-646.
  • Thomson, S. N. & Ring, U. (2006). Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey. Tectonics, 25, Article TC3005.
  • Tiryakioğlu, İ., Umutlu, A. İ. ve Poyraz, F. (2019). Jeodezik Yöntemlerle Deprem Tekrarlama Periyotlarının Belirlenmesi: Alaşehir Bölgesi Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(3), 762-768.
  • Torres, R., Snoeij, P., Davidson, M., Bibby, D. & Lokas, S. (2012). The Sentinel-1 mission and its application capabilities. 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 1703-1706). Munich, Germany. https://doi.org/10.1109/IGARSS.2012.6351196.
  • Uzel, B., Kuiper, K., Sözbilir, H., Kaymakci, N., Langereis, C. G. & Boehm, K. (2020). Miocene geochronology and stratigraphy of western Anatolia: Insights from new Ar/Ar dataset. Lithos, 352, Article 105305.
  • Uzel, B., Langereis, C. G., Kaymakci, N., Sözbilir, H., Özkaymak, Ç. & Özkaptan, M. (2015). Paleomagnetic evidence for an inverse rotation history of Western Anatolia during the exhumation of Menderes core complex. Earth and Planetary Science Letters, 414, 108-125.
  • Uzel, B. & Sözbilir, H. (2008). A first record of a strike-slip basin in western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish Journal of Earth Sciences, 17(3), 559-591.
  • van Hinsbergen, D. J. J., Dekkers, M. J., Bozkurt, E. & Koopman, M. (2010). Exhumation with a twist: paleomagnetic constraints on the evolution of the Menderes metamorphic core complex, western Turkey. Tectonics, 29(3), 1-33, Article TC3009.
  • Walters, R. J., Holley, B., Parsons & Wright T. J. (2011). Interseismic strai accumulation across the North Anatolian Fault from Envisat InSAR measurements. Geophysical Research Letters, 38(5), Article L05303. https://doi.org/10.1029/2010GL046443
  • Wang, H., Wright, T. J. & Biggs, J. (2009). Interseismic slip rate of the northwestern xianshuihe fault from insar data. Geophysical Research Letters, 36(3), Article L03302. https://doi.org/10.1029/2008GL036560
  • Weiss, J. R., Walters, R. J., Morishita, Y., Wright, T. J., Lazecky, M., Wang, H., … & Parsons, B. (2020). High‐resolution surface velocities and strain for Anatolia from Sentinel‐1 InSAR and GNSS data. Geophysical Research Letters, 47(17), Article e2020GL087376. https://doi.org/10.1029/2020GL087376
  • Yagüe-Martínez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R., Shau, R., Geudtner, D., Eineder, M. & Bamler, R. (2016). Interferometric processing of Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2220-2234. https://doi.org/10.1109/TGRS.2015.2497902
  • Yeats, R. S., Sieh, K. ve Allen, C. R. (2006). Deprem Jeolojisi (Çev: R. Demirtaş ve K. Kayabalı). Ankara: Gazi Kitabevi. (Orijinal yayın tarihi: 1997).
  • Yen, J. Y., Lu, C. H., Chung-Pai, C., Hooper, A. J., Chang, Y. H., Liang, W. T., … & Chen, K.-S. (2011). Investigating active deformation in the northern Longitudinal Valley and City of Hualien in eastern Taiwan using persistent scatterer and small-baseline SAR interferometry. Terrestrial Atmospheric and Oceanic Sciences. 22, 291-304. https://doi.org/10.3319/TAO.2010.10.25.01(TT)
  • Yılmaz, Y., Genç, Ş. C., Gürer, O. F., Bozcu, M., Yılmaz, K. ve Karacık, Z., Altunkaynak, Ş. & Elmas, A. (2000). When did the western Anatolian grabens begin to develop?. In E. Bozkurt, J. A. Winchester & J. D. A. Piper (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society of London, Special Publication, 173, 353-384. https://doi.org/10.1144/GSL.SP.2000.173.01.17
  • Zanchi, A. & Angelier, J. (1993). Seismotectonics of western Anatolia: regional stress orientation from geophysical and geological data. Tectonophysics, 222(2), 259-274.
  • Zhang, Y., Meng, X., Chen, G., Qiao, L., Zeng, R. & Chang, J. (2016). Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides, 13(5), 1273-1284.
  • Zhu, L., Mitchell, B. J., Akyol, N., Cemen, I. & Kekovali, K. (2006). Crustal thickness variations in the Aegean region and implications for the extension of continental crust. Journal of Geophysical Research: Solid Earth, 111(B1), Article B01301. https://doi.org/10.1029/2005JB003770

Gediz (Alaşehir) Grabeni’nde Gelişen A-Sismik Yüzey Deformasyonların Kökeni

Year 2024, Volume: 67 Issue: 4, 31 - 62, 28.07.2024
https://doi.org/10.25288/tjb.1342834

Abstract

Gediz (Alaşehir) Grabeni’nde 1969 Alaşehir depreminden sonra yüzey kırığı oluşturacak büyüklükte bir deprem olmamasına rağmen, Alaşehir-Sarıgöl arasında ciddi yüzey çatlakları ve çöküntüler meydana gelmektedir. Bölgede yapılan çalışmalarda, bu deformasyonların tektonik etkilerden mi yoksa yeraltı su seviyesi (YAS) değişimlerinden mi kaynaklandığı konusunda henüz bir fikir birliğine varılamamıştır.

Bu araştırma, PS-InSAR tekniği kullanılarak elde edilen 2B’lu düşey ve yatay hız oranlarının jeolojik bilgiler ışığında değerlendirilmesini ve deformasyona neden olan tektonik modelin ortaya konmasını hedeflemiştir. Bunun için 2015-2023 yılları arasındaki Sentinel-1 uydu görüntüleri kullanılmıştır. Buna göre Sarıgöl Fayı’nın tavan bloğunda deformasyon hızı -26 mm/yıl, taban bloğunda +3 mm/yıl’dır. Bu da aktif tektonik rejim altında Bozdağ Horstu’nun yükselirken, grabenin sürekli çöktüğünü göstermektedir. Alınan Şerit profiller, graben kenar faylarının havzanın çöküntü geometrisini doğrudan kontrol ettiğini göstermektedir. Bulgularımıza göre 11 mm/yıl (batıya) ile 7 mm/yıl (doğuya) zıt yönlü yatay hareketlerin maksimum düşey deformasyon alanında gözlenmesi, çökmenin yatay düzlemde radyal yayılımla, düşeyde ise senformal geometride gerçekleştiğini gösterir. Yani, yatay hareket bölgedeki KB-GD yönlü sıkışmadan ziyade, havzanın çökme rejimini kontrol eden güney kenar faylarının geometrisi ve türüyle ilişkilidir. Güney kenara doğru artan, havzanın içine doğru azalan düşey deformasyonlar, listrik geometrili ana graben fayının tavan bloğundaki domino tarzı geri dönüşe işaret eder. Deformasyonların Alaşehir’in batısından itibaren gözükmemesi, literatürde bahsedildiği gibi Alaşehir ve Salihli alt havzalarının örtülü yarı düşey bir fayla sınırlanmış olmasından kaynaklanır. Bazı noktalarda düşey hız ve YAS değişimlerine ait tutarsızlıkların gözlenmesi ve bu noktaların Alaşehir depremi ile oluşmuş yüzey kırıklarına yakın olması, deformasyonların önemli bir bölümünün tektonik etkiler altında meydana geldiğini düşündürmektedir.

Sonuç olarak deformasyonlar, 1969 Alaşehir depreminin kosismik evresinde gelişen sismik atımlara ek olarak, intersismik dönemde meydana gelen a-sismik kaymalarla oluşmuştur. Bu nedenle mevcut deformasyonları tek başına yeraltı su seviyesi değişimlerine bağlamak hatalı modellemelere neden olabilir. YAS’taki ani değişimler, intersismik dönemde meydana gelecek a-sismik deformasyonun, tektonik kontrol altında gelişen sediman konsolidasyonu hızlandırmasına ve deformasyonların hızlı bir şekilde gerçekleşmesine neden olmaktadır.

Supporting Institution

Dokuz Eylül Üniversitesi

Project Number

Proje Yok

Thanks

Dr. Çiğdem TEPE, Doç. Dr. Ökmen SÜMER ve Dr. Atilla ONGAR

References

  • Abdikan, S., Arıkan, M., Sanli, F. B. & Cakir, Z. (2014). Monitoring of coal mining subsidence in peri-urban area of Zonguldak city (NW Turkey) with persistent scatterer interferometry using ALOS-PALSAR. Environmental Earth Sciences, 71, 4081-4089.
  • Akoğlu, A. M., Jónsson, S., Wang, T., Çakır, Z., Dogan, U., Ergintav, S., … & Emre, Ö. (2018). Evidence for tear faulting from new constraints of the 23 October 2011 Mw 7.1 Van, Turkey, earthquake based on InSAR, GPS, coastal uplift, and field observations. Bulletin of the Seismological Society of America, 108(4), 1929-1946. https://doi.org/10.1785/0120170314
  • Ali, M., Shahzad, M. I., Nazeer, M., Mahmood, I. & Zia, I. (2021). Estimation of surface deformation due to Pasni earthquake using RADAR interferometry. Geocarto International, 36(14), 1630-1645.
  • Ambraseys, N. N. (1988). Engineering Seismology. Earthquake Engineering ve Structural Dynamics, 17, 1-105.
  • Anderson, E. R., Griffin, R. E. & Irwin, D. E. (2016). Implications of different digital elevation models and preprocessing techniques to delineate debris flow inundation hazard zones in El Salvador. Natural Hazard Uncertainty Assessment: Modeling and Decision Support, 167-177.
  • Angelier, J., Dumont, J. F., Karamanderesi, H., Poisson, A., Şimşek, Ş. & Uysal, Ş. (1981). Analyses of fault mechanisms and expansion of southwestern Anatolia since the late Miocene. Tectonophysics, 75(3-4), T1-T9.
  • Arpat, E. ve Bingöl, E. (1969). Ege Bölgesi graben sisteminin gelişimi üzerine düşünceler. Mineral Research and Exploration Institute of Turkey (MTA) Bulletin, 73, 1-8.
  • ASF (Alaska Satellite Facility), 2019. https://search.asf.alaska.edu/#/ , 10 Mart 2019.
  • Aslan, G., Cakir, Z., Lasserre, C. & Renard, F. (2019). Investigating subsidence in the Bursa Plain, Turkey, using ascending and descending Sentinel-1 satellite data. Remote Sensing, 11(1), 85.
  • Asti, R., Malusà, M. G. & Faccenna, C. (2018). Supradetachment basin evolution unravelled by detrital apatite fission track analysis: the Gediz Graben (Menderes Massif, Western Turkey). Basin Research, 30(3), 502-521.
  • Barka, A. & Reilinger R. (1997). Active Tectonics of Eastern Mediterranean region: deduced from GPS, neotectonic and seismicity data. Annali Di Geofisica, X2(3), 587-610.
  • Bayık, C., Abdikan, S., Ozdemir, A., Arıkan, M., Balik Sanli, F. & Doğan, U. (2021). Investigation of the landslides in Beylikdüzü-Esenyurt Districts of Istanbul from InSAR and GNSS observations. Natural Hazards, 109(1), 1201-1220.
  • Bayramov, E., Buchroithner, M., Kada, M. & Zhuniskenov, Y. (2021). Quantitative assessment of vertical and horizontal deformations derived by 3d and 2d decompositions of insar line-of-sight measurements to supplement industry surveillance programs in the tengiz oilfield (Kazakhstan). Remote Sensing, 13(13), 2579.
  • Beccaletto, L. & Steiner, C. (2005). Evidence of two-stage extensional tectonics from the northern edge of the Edremit Graben, NW Turkey. Geodinamica Acta, 18(3-4), 283-297.
  • Bekaert, D. P. S., Walters, R. J., Wright, T. J., Hooper, A. J. & Parker, D. J. (2015). Statistical comparison of InSAR tropospheric correction techniques. Remote Sensing of Environment, 170, 40-47.
  • Berardino, P., Fornaro, G., Lanari, R. & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Transactions Geoscience and Remote Sensing, 40(11), 2375-2383.
  • Biryol, C. B., Beck, S. L., Zandt, G. & Özacar, A. A. (2011). Segmented African lithosphere beneath the Anatolian region inferred from teleseismic P-wave tomography. Geophysics Journal International, 184(3), 1037-1057.
  • Blasco, J.M.D., Foumelis, M., Stewart, C. & Hooper, A. (2019). Measuring urban subsi-dence in the Rome metropolitan area (Italy) with sentinel-1 SNAP-StaMPSpersistent scatterer interferometry. Remote Sensing 11(2), 17.
  • Bodur, Ö., Göğüş, O. H., Brune, S., Uluocak, E. Ş., Glerum, A., Fichtner, A. & Sözbilir, H. (2023). Crustal flow driving twin domes exhumation and low-angle normal faulting in the Menderes Massif of western Anatolia. Earth and Planetary Science Letters, 619, Article 118309.
  • Bozkurt, E. (2000). Timing of Extension on the Büyük Menderes Graben, western Turkey and its tectonic implications. Geological Society London, 173, 385-403.
  • Bozkurt, E. (2001a). Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14, 3-30.
  • Bozkurt, E. (2001b). Late Alpine evolution of the central Menderes Massif, western Turkey. International Journal of Earth Sciences, 89(4), 728-744.
  • Bozkurt, E. (2003). Origin of NE-trending basins in western Turkey. Geodinamica Acta, 16(2-6), 61-81.
  • Bozkurt, E. (2004). Granitoid rocks of the southern Menderes Massif (southwestern Turkey): field evidence for Tertiary magmatism in an extensional shear zone. International Journal of Earth Sciences, 93(1), 52-71.
  • Bozkurt, E. & Rojay, B. (2005). Episodic, two-stage Neogene extension and short-term intervening compression in Western Turkey: field evidence from the Kiraz Basin and Bozdağ Horst. Geodinamica Acta, 18(3-4), 299-316.
  • Bozkurt, E. & Sözbilir, H. (2004). Tectonic evolution of the Gediz Graben: field evidence for an episodic, two-stage extension in western Turkey. Geological Magazine, 141(1), 63-79.
  • Bozkurt, E. & Sözbilir, H. (2006). Evolution of the large-scale active Manisa Fault, Southwest Turkey: implications on fault development and regional tectonics. Geodinamica Acta, 19(6), 427-453.
  • Bozkurt, E., Winchester, J. A., Mittwede, S. K. & Ottley, C. J. (2006). Geochemistry and tectonic implications of leucogranites and tourmalines of the southern Menderes Massif, Southwest Turkey. Geodinamica Acta, 19(5), 363-390.
  • Bozzano, F., Carabella, C., De Pari, P., Discenza, M. E., Fantucci, R., Mazzanti, P., …& Sciarra, N. (2019). Geological and geomorphological analysis of a complex landslides system: the case of San Martino sulla Marruccina (Abruzzo, Central Italy). Journal of Maps, 16(2), 123-136. https://doi.org/10.1080/17445647.2019.1702596
  • Buscher, J. T., Hampel, A., Hetzel, R., Dunkl, I., Glotzbach, C., Struffert, A., Akal, C. & Rätz, M. (2013). Quantifying rates of detachment faulting and erosion in the central Menderes Massif (western Turkey) by thermochronology and cosmogenic 10Be. Journal of the Geological Society, 170(4), 669-683. https://doi.org/10.1144/jgs2012-132
  • Chen, C. W. & Zebker, H. A. (2002). Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Transactions on Geoscience and Remote Sensing, 40(8), 1709-1719.
  • Cigna, F., Osmanoğlu, B., Cabral-Cano, E., Dixon, T. H., Ávila-Olivera, J. A., Garduño-Monroy, V. H., DeMets, C. & Wdowinski, S. (2012). Monitoring land subsidence and its induced geological hazard with Synthetic Aperture Radar Interferometry: A case study in Morelia, Mexico. Remote Sensing of Environment, 117, 146-161.
  • Çağlayan, A., Isik, V. & Saber, R. (2019). An assessment of Holocene seismic activity on 1944 Earthquake Segment, North Anatolian Fault Zone (Turkey). Geosciences Journal, 23, 805-822.
  • Çakır, Z., Chabalier, J. B. D., Armijo, R., Meyer, B., Barka, A. & Peltzer, G. (2003). Coseismic and early post-seismic slip associated with the 1999 Izmit earthquake (Turkey), from SAR interferometry and tectonic field observations. Geophysical Journal International, 155(1), 93-110.
  • Çelik, H. (1991). Akarsuların (vadi) profil özellikleri ile eski tabanlar arasındaki ilişkiler üzerine araştırmalar. İstanbul Üniversitesi Orman Fakültesi Dergisi, 43(2), 101-130.
  • Çetin, E., Çakır, Z., Meghraoui, M., Ergintav, S. & Akoglu, A. M. (2014). Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochemistry, Geophysics, Geosystems, 15(7), 2883-2894.
  • Çiftçi, N. B. & Bozkurt, E. (2007). Anomalous stress field and active breaching at relay ramps: a field example from Gediz Graben, SW Turkey. Geological Magazine, 144(4), 687-699.
  • Çiftçi, N. B. & Bozkurt, E. (2008) Folding of the Gediz Graben Fill, SW Turkey: Extensional and/or Contractional Origin?. Geodinamica Acta, 21(3), 145-167.
  • Çiftçi, N. B. & Bozkurt, E. (2009a). Evolution of the Miocene sedimentary fill of the Gediz Graben, SW Turkey. Sedimentary Geology, 216(3-4), 49-79.
  • Çiftçi, N. B. & Bozkurt, E. (2009b). Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics, 473(1-2), 234-260.
  • Çiftçi, N. B. & Bozkurt, E. (2010). Structural evolution of the Gediz Graben, SW Turkey: temporal and spatial variation of the graben basin. Basin Research, 22(6), 846-873.
  • Dai, F., Lee, C. & Ngai, Y. Y. (2002). Landslide risk assessment and management: an overview. Engineering Geology, 64(1): 65–87. https://doi.org/10.1016/S0013-7952(01)00093-X
  • Dănişor, C., Datcu, M. & Dănişor, A. (2018). Estimation of terrain’s linear deformation rates using synthetic aperture radar systems. In IOP Conference Series: Materials Science and Engineering, 400(2), 022018. IOP Publishing.
  • De Novellis, V., Carlino, S., Castaldo, R., Tramelli, A., De Luca, C., Pino, N.A., Pepe, S.; Convertito, V., Zinno, I. & De Martino, P. (2018). The 21 August 2017 Ischia (Italy) earthquake source model inferred from seismological, GPS, and DInSAR measurements. Geophysical Research Letters, 45(5), 2193–2202. https://doi.org/10.1002/2017GL076336
  • Dewey, J. F. & Şengör, A. M. C. (1979). Aegean and surrounding regions: complex multiplate and continuum tectonics in a convergent zone. Geological Society of America Bulletin, 90(1), 84-92.
  • Dilek, Y., Altunkaynak, S. & Öner, Z. (2009). Syn-extensional granitoids in the Menderes core complex and the late Cenozoic extensional tectonics of the Aegean province. In: Ring, U., Wernicke, B. (Eds.), Extending a Continent: Architecture, Rheology and Heat Budget. Geological Society of London Special Publications, 321, 197-223.
  • Doğan, A., Kaygusuz, Ç., Tiryakioğlu, İ., Yigit, C. O., Sözbilir, H., Özkaymak, Ç. & Turgut, B. (2022). Geodetic evidence for aseismic fault movement on the eastern segment of the Gediz Graben system (western Anatolia extensional province, Turkey) and its significance for settlements. Acta Geodaetica et Geophysica, 57(3), 461-476.
  • Doğru, F. (2020). The Importance of Atmospheric Corrections on InSAR Surveys Over Turkey: Case Study of Tectonic Deformation of Bodrum-Kos Earthquake. Pure and Applied Geophysics, 177(12), 5761-5780.
  • Dumont, J. F., Uysal, S., Şimşek S., Karamanderesi, I. H. ve Letouzcy, F. (1979). Güneybatı Anadolu'daki grabenlerin oluşumu. Maden Tetkik ve Arama Dergisi, 92, 7-17.
  • Elliott, J. R., Walters R. J. & Wright, T. J. (2016). The role of space-based observation in understanding and responding to active tectonics and earthquakes. Nature Communications, 7, Article 13844.
  • Emre, Ö., Duman, T. Y., Özalp, S., Şaroğlu, F., Olgun, Ş., Elmacı, H. & Çan, T. (2018). Active fault database of Turkey. Bulletin of Earthquake Engineering, 16(8), 3229-3275. https://doi.org/10.1007/s10518-016-0041-2
  • Emre, T. & Sözbilir, H. (2007). Tectonic evolution of the Kiraz Basin, Küçük Menderes Graben: evidence for compression/uplift-related basin formation overprinted by extensional tectonics in West Anatolia. Turkish Journal of Earth Sciences, 16(4), 441-470.
  • Eravcı, B., Erkmen, C., Yaman, M., Tüzel, B. & Iravul, Y. (2009). The Origin of Ground Deformations that Caused Damage at Sarigol-Manisa-Turkey. EGU General Assembly Conference Abstracts, 2655.
  • Erkül, F., Helvacı, C. & Sözbi̇li̇r, H. (2005). Evidence for two episodes of volcanism in the Bigadiç borate basin and tectonic implications for western Turkey. Geological Journal, 40(5), 545-570.
  • Ersoy, E. Y. & Helvacı, C. (2007). Stratigraphy and geochemical features of the Early Miocene bimodal (ultrapotassic and calc-alkaline) volcanic activity within the NE-trending Selendi Basin, Western Anatolia, Turkey. Turkish Journal of Earth Sciences, 16, 117-139.
  • Ersoy, E. Y., Helvacı, C. & Sözbilir, H. (2010). Tectono-stratigraphic evolution of the NE–SW-trending superimposed Selendi basin: Implications for late Cenozoic crustal extension in Western Anatolia, Turkey. Tectonophysics, 488(1-4), 210-232.
  • Eyidoğan, H. (1988). Rates of crustal deformation in western Turkey as deduced from major earthquakes. Tectonophysics, 148(1-2), 83-92.
  • Eyidoğan, H. & Jackson, J. A. (1985). A seismological study of normal faulting in the Demirci, Alaşehir ve Gediz earthquake of 1969-1970 in western Turkey: implications for the nature and geometry of deformationdeformation in the continental crust. Geophysical Journal of Royal Astronomical Society, 81, 569-607.
  • Fattahi, H. (2015). Geodetic Imaging of Tectonic Deformation With InSAR [PhD Thesis]. University of Miami, Florida.
  • Fernandez, J., Prieto, J. F., Escayo, J., Camacho, A. G., Luzón, F., Tiampo, K. F., … & Mallorquí, J. J. (2018). Modeling the two-and three-dimensional displacement field in Lorca, Spain, subsidence and the global implications. Scientific Reports, 8(1), Article 14782. https://doi.org/10.1038/s41598-018-33128-0
  • Ferretti, A., Prati, C. & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 39(1), 8-20.
  • Fialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature, 441(7096), 968-971.
  • Forster, M. & Lister, G. (2009). Core-complex-related extension of the Aegean lithosphere initiated at the Eocene-Oligocene transition. Journal of Geophysical Research: Solid Earth, 114(B2). Article B02401. https://doi.org/10.1029/2007JB005382
  • Genç, C. Ş., Altunkaynak, Ş., Karacık, Z., Yazman, M. & Yılmaz, Y. (2001). The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14(1-3), 45-55.
  • Gessner, K., Gallardo, L. A., Markwitz, V., Ring, U. & Thomson, S. N. (2013). What caused the denudation of the Menderes Massif: Review of crustal evolution, lithosphere structure, and dynamic topography in southwest Turkey. Gondwana research, 24(1), 243-274.
  • Gessner, K., Piazolo, S., Güngör, T., Ring, U., Kroner, A. & Passchier, C.W. (2001a). Tectonic significance of deformation patterns in granitoid rocks of the Menderes nappes, Anatolide belt, southwest Turkey. International Journal of Earth Sciences 89, 766-780.
  • Gessner, K., Ring, U., Johnson, C., Hetzel, R., Passchier, C.W. & Güngör, T. (2001b). An active bivergent rolling-hinge detachment system: central Menderes metamorphic core complex in western Turkey. Geology, 29, 611-614.
  • Gezgin, C. (2022). The influence of groundwater levels on land subsidence in Karaman (Turkey) using the PS-InSAR technique. Advances in Space Research, 70(11), 3568-3581.
  • Goldstein, R. M., Zebker, H. A. & Werner, C. L. (1988). Satellite radar interferometry: Two-dimensional phase unwrapping. Radio Science, 23, 713-720.
  • Göktaş, F. ve Hakyemez, Y. (2015). Kemalpaşa (İzmir) Pliyo-Kuvaterner Havzasının Stratigrafik Evrimi. Türkiye Jeoloji Bülteni, 58(2), 1-28. https://doi.org/10.25288/tjb.298498
  • Gören, R. (2016). Alaşehir ve çevresinde Gediz grabeni güney kenar faylarının holosen aktivitesi [Yüksek Lisans Tezi]. Eskişehir Osmangazi Üniversitesi, Eskişehir.
  • Gürboğa, Ş. D., Koçyiğit, A. & Ruffet, G. (2013). Episodic two-stage extensional evolutionary model for southwestern Anatolian graben–horst system: new field data from the Erdoğmuş-Yenigediz graben (Kütahya). Journal of Geodynamics, 65, 176-198.
  • Gürer, Ö. F., Sarica-Filoreau, N., Özburan, M., Sangu, E. & Doğan, B. (2009). Progressive development of the Büyük Menderes Graben based on new data, western Turkey. Geological Magazine, 146(5), 652-673.
  • Gürsoy, H., Temiz, H. ve Tatar, O. (1997). Gediz grabeni GD kenarındaki güncel deformasyon verileri. Aktif Tektonik Araştırma Grubu Birinci Toplantısı, İTÜ, İstanbul.
  • Haghighi, M. H. (2019). Local and large scale insar measurement of ground surface deformation [PhD Thesis]. Leibniz Universität Hannover, Hannover.
  • Hancock, P. L. & Barka, A. A. (1987). Kinematic indicators on active normal faults in western Turkey. Journal of Structural Geology, 9(5-6), 573-584.
  • Hastaoğlu, K. O., Poyraz, F., Erdoğan, H., Tiryakioğlu, İ., Özkaymak, Ç., Duman, H. Gül, Y., Guler, S., Dogan, A. & Gul, Y. (2023). Determination of periodic deformation from InSAR results using the FFT time series analysis method in Gediz Graben. Natural Hazards, 117(1), 491-517. https://doi.org/10.1007/s11069-023-05870-w
  • Hetzel, R., Ring, U., Akal, C. & Troesch, M. (1995). Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. Journal of the Geological Society of London, 152, 639-654. https://doi.org/10.1144/gsjgs.152.4.0639
  • Hetzel, R., Romer, R. L., Candan, O. & Passchier, C. W. (1998). Geology of the Bozdağ area, central Menderes massif, SW Turkey: Pan-African basement and Alpine deformation. Geologische Rundschau, 87(3), 394-406.
  • Hodgkinson, K. M. (1996). Crustal deformation in extensional regimes: Iceland, Nevada and SW Turkey. [PhD Thesis]. Durham University, Durham.
  • Hooper, A. (2008). A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophysical Research Letters, 35, L16302.
  • Hooper, A., Bekaert, D., Spaans, K. & Arıkan, M. (2012). Recent advances in SAR interferometry time series analysis for measuring crustal deformation. Tectonophysics, 514, 1-13.
  • Hooper, A., Zebker, H., Segall, P. & Kampes, B. (2004). A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophysical Research Letters, 31, L23611.
  • Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L. & Sun, Q. (2014). Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133, 1-17.
  • Ingleby, T. & Wright T. J. (2017). Omori-like decay of postseismic velocities following continental earthquakes. Geophysical Research Letters, 44(7), 3119-3130.
  • Innocenti, F., Agostini, S., Di Vincenzo, G., Doglioni, C., Manetti, P., Savaşçin, M. Y. & Tonarini, S. (2005). Neogene and Quaternary volcanism in Western Anatolia: magma sources and geodynamic evolution. Marine Geology, 221(1-4), 397-421. https://doi.org/10.1016/j.margeo.2005.03.016
  • Işık, V. & Tekeli, O. (2001). Late orogenic crustal extension in the northern Menderes massif (western Turkey): evidences for metamorphic core complex formation. International Journal of Earth Sciences, 89, 757-765.
  • Işık, V., Saber, R. & Cağlayan, A. (2021). November 08, 2019 Turkmanchay earthquake (Mw: 5.9) in NW Iran: an assessment of the earthquake using DInSAR time-series and field evidence. Natural Hazards, 105, 3013-3037.
  • İmamoğlu, M., Balik Sanli, F., Cakir, Z. & Kahraman, F. (2022). Rapid ground subsidence in the Küçük Menderes Graben (W. Turkey) captured by Sentinel-1 SAR data. Environmental Earth Sciences, 81(7), 221.
  • İmamoğlu, M., Kahraman, F., Cakir, Z. & Sanli, F. B. (2019). Ground deformation analysis of Bolvadin (W. Turkey) by means of multi-temporal InSAR techniques and Sentinel-1 data. Remote Sensing, 11(9), 1069.
  • Jackson, J. & McKenzie, D. (1988). The relationship between plate motions and seismic moment tensors and rates of active deformation in the Mediterranean and Middle East. Geophysical Journal, 93, 45-73.
  • Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., … & Driussi, O. (2013). Aegean tectonics: Strain localisation, slab tearing and trench retreat. Tectonophysics, 597, 1-33. https://doi.org/10.1016/j.tecto.2012.06.011
  • Kaya, O., Ünay, E., Saraç, G., Eichhorn, S., Hassenrück, S., Knappe, A., Pekdeğer, A. & Mayda, S. (2004). Halitpaşa Transpressive Zone: Implications for an Early Pliocene Compressional Phase in Central Western Anatolia, Turkey. Turkish Journal of Earth Sciences, 13, 1-13.
  • Kent, E. (2015). The Relationship Between Active Faulting and Fluvial Geomorphology: A Case Study In The Gediz Graben, Turkey [PhD Thesis]. Plymouth University, Plymouth.
  • Ketin, İ. (1968). Relations between general tectonic features and the main earthquake regions of Turkey. Bulletin of the Mineral Research and Exploration, 71(71).
  • Kim, D. J. & Jung, J. (2018). Subsidence in the Kathmandu Basin, before and after the 2015 Mw 7.8 Gorkha Earthquake, Nepal Revealed from Small Baseline Subset-DInSAR Analysis. GIScience & Remote Sensing, 55(4), 604-621.
  • Koca, M. Y., Sözbilir, H. ve Uzel, B. (2011). Sarıgöl fay zonu boyunca meydana gelen deformasyonların nedenleri üzerine bir araştırma. Jeoloji Mühendisliği Dergisi, 35(2), 151-174.
  • Koçman, A. (1985). İzmir-Bozdağlar yöresinin yapısal jeomorfolojisi ve evrimi. Ege Coğrafya Dergisi, 3(1), 63-86.
  • Koçyiğit, A. (1984). Güneybatı Türkiye ve Yakın Dolayında levha içi yeni tektonik gelişim. Türkiye Jeoloji Kurumu Bülteni, 27, 1-16. https://www.jmo.org.tr/resimler/ekler/84b98aac2dddf59_ek.pdf?dergi=T%DCRK%DDYE%20JEOLOJ%DD%20B%DCLTEN%DD
  • Koçyiğit, A., Yusufoğlu, H. & Bozkurt, E. (1999). Evidence from the Gediz graben for episodic two stage extension in western Turkey. Journal of the Geological Society of London, 156, 605-616.
  • Koralay, E., Candan, O., Akal, C., Dora, O. Ö., Chen, F., Satir, M. ve Oberhänsli, R. (2011). Menderes Masifi'ndeki Pan-Afrikan ve Triyas yaşlı metagranitoyidlerin jeolojisi ve jeokronolojisi, Batı Anadolu, Türkiye. Maden Tetkik ve Arama Dergisi, 142, 69-121.
  • Lauknes, T. R., Shanker, A. P., Dehls, J. F., Zebker, H. A., Henderson, I. H. C. & Larsen, Y. (2010). Detailed rockslide mapping in northern Norway with small baseline and persistent scatterer interferometric SAR time series methods. Remote Sensing of Environment, 114(9), 2097-2109.
  • Le Pichon, X. & Angelier, J. (1979). The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60, 1-42.
  • Le Pichon X., Chamot-Rooke C., Lallemant S., Noomen R. & Veis G. (1995). Geodetic determination of the kinematics of Central Greece with respect to Europe: implications for Eastern Mediterranean tectonics, Journal of Geophysical Research, 100, 12675-12690.
  • Lips, A. L., Cassard, D., Sözbilir, H., Yilmaz, H. & Wijbrans, J. R. (2001). Multistage exhumation of the Menderes massif, western Anatolia (Turkey). International Journal of Earth Sciences, 89(4), 781-792.
  • Maghsoudi, Y., van der Meer, F., Hecker, C., Perissin, D. & Saepuloh, A. (2018). Using PS-InSAR to detect surface deformation in geothermal areas of West Java in Indonesia. International Journal of Applied Earth Observation and Geoinformation, 64, 386-396.
  • Massonnet, D., Holzer, T. & Vadon, H. (1997). Land subsidence caused by the East Mesa geothermal field, California, observed using SAR interferometry. Geophysical Research Letters, 24(8), 901-904.
  • McClusky, S. C., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., … & Veis, G. (2000). Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. Journal of Geophysical Research, 105, 5695-5719. https://doi.org/10.1029/1999JB900351
  • McKenzie, D. (1978). Active tectonics of the Alpine-Himalayan belt: the Aegean Sea and surrounding regions. Geophysical Journal International, 55(1), 217-254.
  • Nocquet, J. M. (2012). Present-day kinematics of the Mediterranean: a comprehensive overview of GPS results. Tectonophysics, 579, 220-242.
  • Oktar, O., Erdoğan, H., Poyraz, F. & Tiryakioğlu, İ. (2021). Investigation of deformations with the GNSS and PSInSAR methods. Arabian Journal of Geosciences, 14(23), 1-16.
  • Osmanoğlu, B., Sunar, F., Wdowinski, S. & Cabral-Cano, E. (2016). Time series analysis of InSAR data: Methods and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 90-102.
  • Öner, Z. & Dilek, Y. (2011). Supradetachment basin evolution during continental extension: The Aegean province of western Anatolia, Turkey. Geological Society of America Bulletin, 123(11-12), 2115-2141.
  • Özkaymak, C. & Sözbilir, H. (2008). Stratigraphic and structural evidence for fault reactivation: the active Manisa fault zone, western Anatolia. Turkish Journal of Earth Sciences, 17, 615-635.
  • Özkaymak, Ç., Sözbilir, H., Tiryakioğlu, İ. ve Baybura, T. (2017). Bolvadin’de (Afyon-Akşehir Grabeni, Afyon) Gözlenen Yüzey Deformasyonlarının Jeolojik, Jeomorfolojik ve Jeodezik Analizi. Türkiye Jeoloji Bülteni, 60(2), 169-189. https://doi.org/10.25288/tjb.302914
  • Paton, S. (1992). Active normal faulting, drainage patterns and sedimentation in southwestern Turkey. Journal of the Geological Society, London 149, 1031-44.
  • Pawluszek-Filipiak, K. & Borkowski, A. (2020). Integration of DInSAR and SBAS Techniques to determine mining-related deformations using sentinel-1 data: The case study of Rydułtowy mine in Poland. Remote Sensing, 12(2), 242.
  • Poyraz, F. & Hastaoğlu, K. Ö. (2020). Monitoring of tectonic movements of the Gediz Graben by the PSInSAR method and validation with GNSS results. Arabian Journal of Geosciences, 13(17), 1-11.
  • Poyraz, F., Hastaoğlu, K. Ö. ve Demirel, M. (2016). Gediz Grabenin Doğu Kesimindeki Tektonik Hareketlerin Envisat Radar Görüntülerini Kullanarak Araştırılması. 8. Ulusal Mühendislik Ölçmeleri Sempozyumu (s.: 1-5). İstanbul.
  • Poyraz, F., Hastaoğlu, K. Ö., Koçbulut, F., Tiryakioğlu, İ., Tatar, O., Demirel, M., … & Sıgırcı, R. (2019). Determination of the block movements in the eastern section of the Gediz Graben (Turkey) from GNSS measurements. Journal of Geodynamics, 123, 38-48. https://doi.org/10.1016/j.jog.2018.11.001
  • Poyraz, F., Tatar, O., Hastaoğlu, K. Ö., Tiryakioğlu, İ., Gürsoy, Ö., Koçbulut, F., … & Gül, D. (2015). Gediz Grabeninin Doğu Kesimindeki Güncel Tektonik Hareketlerin GPS Ve Ps-InSAR Yöntemleri Kullanılarak Belirlenmesi; İlk Sonuçlar. Harita Teknolojileri Elektronik Dergisi, 7(1), 17-28. https://doi.org/10.15659/hartek.15.03.64
  • Price, S. P. & Scott, B. (1994). Fault-block rotations at the edge of a zone of continental extension; southwest Turkey. Journal of Structural Geology, 16(3), 381-392.
  • Purvis, M. & Robertson, A. (2004). A pulsed extension model for the Neogene–Recent E–W-trending Alaşehir Graben and the NE–SW-trending Selendi and Gördes Basins, western Turkey. Tectonophysics, 391(1), 171-201.
  • Purvis, M. & Robertson, A. (2005). Sedimentation of the Neogene–Recent Alaşehir (Gediz) continental graben system used to test alternative tectonic models for western (Aegean) Turkey. Sedimentary Geology, 173(1-4), 373-408.
  • Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., … & Campillo, M. (2016). Triggering of the 2014 Mw 7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico. Nature Geoscience, 9(11), 829-833. https://doi.org/10.1038/ngeo2817
  • Reid, H. F. (1910). The mechanics of the earthquake: The California Earthquake of April 18,1906. Carnegie Institute Washington Publication, 87(2), 192.
  • Reilinger, R. E., McClusky, S. C., Oral, M. B., King, R. W., Toksoz, M. N., Barka, A. A., Kinik, I., Lenk, O. & Sanli, I. (1997). GPS measurements of present day crustal movements in the Arabia-Africa-Eurasia plate collision zone. Journal of Geophysical Research, Solid Earth, 102(B5), 9983-9999. https://doi.org/10.1029/96JB03736
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R. … & Karam, G. (2006). GPS constraints on continental deformation in the Africa‐Arabia‐Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research, Solid Earth, 111(B5). Article B5411 https://doi.org/10.1029/2005JB004051
  • Ring, U., Johnson, C., Hetzel, R. & Gessner, K. (2003). Tectonic denudation of a Late Cretaceous–Tertiary collisional belt: regionally symmetric cooling patterns and their relation to extensional faults in the Anatolide belt of western Turkey. Geological Magazine, 140(4), 421-441.
  • Roberts, S. C. (1988). Active normal faulting in Central Greece and Western Turkey [phD Thesis]. University of Cambridge, Cambridge.
  • Rojay, B. (2009). Post-Miocene Deformation in Central Anatolia and its link to Horst and Graben System of Western Anatolia, Turkey. EGU General Assembly Conference Abstracts, 4601.
  • Rojay, B., Demirci, C., Toprak, V. & Özsayın, E. (2019). Superposition of the neotectonic events in a complex multi extensional terrain evolution during post-Miocene in western Anatolia (Gediz-Alaşehir Graben, western Turkey). Geophysical Research Abstracts, (21).
  • Rojay, B., Toprak, V., Demirci, C. & Süzen, L. (2005). Plio-quaternary evolution of the Küçük Menderes graben southwestern Anatolia, Turkey. Geodinamica Acta, 18(3-4), 317-331.
  • Rosen, P. A., Hensley, S., Zebker, H. A., Webb, F. H. & Fielding, E. J. (1996). Surface deformation and coherence measurements of Kilauea Volcano, Hawaii, from SIR‐C radar interferometry. Journal of Geophysical Research: Planets, 101(E10), 23109-23125.
  • Saatçılar, R., Ergintav, S., Demirbaǧ, E. & İnan, S. (1999). Character of active faulting in the North Aegean Sea. Marine Geology, 160(3-4), 339-353.
  • Saber, R., Isik, V., Caglayan, A. & Tourani, M. (2023). Sentinel-1 InSAR observations and time-series analysis of co-and postseismic deformation mechanisms of the 2021 Mw 5.8 Bandar Ganaveh Earthquake, Southern Iran. Journal of Mountain Science, 20(4), 911-927.
  • Sangu, E., Gürer, Ö. F. & Gürer, A. (2020). Fault kinematic and Plio-Quaternary paleostress evolution of the Bakırçay basin, western Turkey. International Geology Review, 62(10), 1245-1261.
  • Sarychikhina, O. & Glowacka, E. (2015). Application of DInSAR Stacking Method for Monitoring of Surface Deformation Due to Geothermal Fluids Extraction in the Cerro Prieto Geothermal Field, Baja California, Mexico. Proceedings World Geothermal Congress 2015 (WGC) (pp. 19-25).
  • Savaşçın, M. Y., Giese, L. B., Kaya, O., Pekdeğer, A. & Woith, H. (1999). An example for the optimal use of geothermal energy-the integrated development project for Kula, West Anatolia. International Symposium on Geology and Environment, Istanbul.
  • Seyitoğlu, G. & Scott, B. C. (1991). Late Cenozoic crustal extension and basin formation in west Turkey. Geological Magazine, 128(2), 155-166.
  • Seyitoğlu, G. & Scott, B. C. (1994). Late Cenozoic basin development in west Turkey: Gördes basin tectonics and sedimentation. Geological Magazine, 131(5), 631-637.
  • Seyitoğlu, G. & Scott, B. C. (1996). The age of Alaşehir Graben (west Turkey) and its tectonic implications. Geological Journal, 31(1), 1-11.
  • Seyitoğlu, G., Scott, B. C. & Rundle, C. C. (1992). Timing of Cenozoic extensional tectonics in west Turkey. Journal of the Geological Society, 149(4), 533-538.
  • Seyitoğlu, G., Tekeli, O., Çemen, İ., Şen, Ş. & Işık, V. (2002). The role of the flexural rotation/rolling hinge model in the tectonic evolution of the Alaşehir graben, western Turkey. Geological Magazine, 139, 15-26.
  • Shahabi, H. & Hashim, M. (2015). Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Scientific reports, 5(1), 9899.
  • Shanker, P., Casu, F., Zebker, H. A. & Lanari, R. (2011). Comparison of persistent scatterers and small baseline time-series InSAR results: A case study of the San Francisco bay area. IEEE Geoscience and Remote Sensing Letters, 8(4), 592-596.
  • Sözbilir, H. (2001). Extensional tectonics the geometry of related macroscopic structures: Field evidence from the Gediz detachment, western Turkey. Turkish Journal of Earth Science, 10, 51-67.
  • Sözbilir H. (2002). Revised stratigraphy and facies analysis of the Palaeocene-Eocene supra-allochthonous sediments and their tectonic significance (Denizli, SW Turkey). Turkish Journal of Earth Sciences, 11, 1-27.
  • Sözbilir, H., Erkül, F. & Sümer, Ö. (2003a). Field evidence for post-Miocene NE-trending accomodation zone lying between Gümüldür (İzmir) and Bigadiç (Balıkesir), west Anatolia. 56. Geological Congress of Turkey, 85-86.
  • Sözbilir, H., İnci, U., Erkül, F. & Sümer, Ö. (2003b). An active intermittent transfer zone accommodating N–S extension in western Anatolia and its relation to the North Anatolian fault system. International Workshop on the North Anatolian, East Anatolian and Dead Sea Fault Systems: Recent Progress in Tectonics and Palaeo-seismology and Field Training Course in Palaeoseismology, 87.
  • Sözbilir, H., Uzel, B., Sümer, Ö., Eski, S., Softa M., Tepe, Ç., Özkaymak, Ç. ve Baba, A. (2018). Çanakkale-Ayvacık Deprem Fırtınasının (14 Ocak-20 Mart 2017) Sismik Kaynakları. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B-Teorik Bilimler, 6, 1-17.
  • Sümer, Ö., İnci, U. & Sözbilir, H. (2013). Tectonic evolution of the Söke Basin: extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben, Western Anatolia, Turkey. Journal of Geodynamics, 65, 148-175.
  • Şaroğlu, F. ve Güler, B. (2020). Batı Anadolu Tektonik Kaması’nın güncel deformasyonu: batıya doğru kaçıştan kaynaklanan blok hareketleri. Türkiye Jeoloji Bülteni, 63(2), 161-194. https://doi.org/10.25288/tjb.593423
  • Şengör, A. M. C. (1979). The North Anatolian Transform Fault: its age, offset and tectonic significance. Geological Society of London, 136, 269-282.
  • Şengör, A. M. C. (1987). Cross-faults and differential stretching of hanging walls in regions of low-angle normal faulting: examples from western Turkey. Geological Society London, 28, 575-589.
  • Şengör, A. M. C., Görür, N. & Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, In K. Biddle, N. Christie-Blick (Eds), Strike-slip Deformation, Basin Formation and Sedimentation. Society of Economic Paleontologists and Mineralogists, Special Publications 37, 227-264.
  • Şimşek, C. ve Demirkesen, A. C. (2022). Kısa Dönem Kuyu İzlem Verilerine Göre Yeraltısuyu Besleniminin Belirlenmesi, Alaşehir (Manisa) Örneği. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 24(70), 91-104.
  • Tatar, O., Sözbilir, H., Koçbulut, F., Bozkurt, E., Aksoy, E., Eski, S., … & Metin, Y. (2020). Surface deformations of 24 January 2020 Sivrice (Elazığ)–Doğanyol (Malatya) earthquake (Mw= 6.8) along the Pütürge segment of the East Anatolian Fault Zone and its comparison with Turkey’s 100-year-surface ruptures. Mediterranean Geoscience Reviews, 2(3), 385-410. https://doi.org/10.1007/s42990-020-00037-2
  • Taymaz, T., Ganas, A., Berberian, M., Eken, T., Irmak, T. S., Kapetanidis, V., … & Özkan, B. (2022). The 23 February 2020 Qotur-Ravian earthquake doublet at the Iranian-Turkish border: Seismological and InSAR evidence for escape tectonics. Tectonophysics, 838. Article 229482. https://doi.org/10.1016/j.tecto.2022.229482
  • Taymaz, T., Jackson, J. & McKenzie, D. (1991). Active tectonics of the north and central Aegean Sea. Geophysical Journal International, 106(2), 433-490.
  • Taymaz, T., Yilmaz, Y. & Dilek, Y. (2007). The geodynamics of the Aegean and Anatolia: introduction. Geological Society, London, Special Publications, 291(1), 1-16.
  • Tekin, T., Sançar, T. & Rojay, B. (2022). A new set of overprinting slip-data along Manisa Fault in Aegean Extensional Province, Western Anatolia. EGU22-452, Copernicus Meetings.
  • Temiz, H., Gürsoy, H. & Tatar, O. (1998). Kinematics of late pliocene-quaternary normal faulting in the southeastern end of the Gediz graben, Western Anatolia, Turkey. International Geology Review, 40(7), 638-646.
  • Thomson, S. N. & Ring, U. (2006). Thermochronologic evaluation of postcollision extension in the Anatolide orogen, western Turkey. Tectonics, 25, Article TC3005.
  • Tiryakioğlu, İ., Umutlu, A. İ. ve Poyraz, F. (2019). Jeodezik Yöntemlerle Deprem Tekrarlama Periyotlarının Belirlenmesi: Alaşehir Bölgesi Örneği. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 19(3), 762-768.
  • Torres, R., Snoeij, P., Davidson, M., Bibby, D. & Lokas, S. (2012). The Sentinel-1 mission and its application capabilities. 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 1703-1706). Munich, Germany. https://doi.org/10.1109/IGARSS.2012.6351196.
  • Uzel, B., Kuiper, K., Sözbilir, H., Kaymakci, N., Langereis, C. G. & Boehm, K. (2020). Miocene geochronology and stratigraphy of western Anatolia: Insights from new Ar/Ar dataset. Lithos, 352, Article 105305.
  • Uzel, B., Langereis, C. G., Kaymakci, N., Sözbilir, H., Özkaymak, Ç. & Özkaptan, M. (2015). Paleomagnetic evidence for an inverse rotation history of Western Anatolia during the exhumation of Menderes core complex. Earth and Planetary Science Letters, 414, 108-125.
  • Uzel, B. & Sözbilir, H. (2008). A first record of a strike-slip basin in western Anatolia and its tectonic implication: the Cumaovası Basin. Turkish Journal of Earth Sciences, 17(3), 559-591.
  • van Hinsbergen, D. J. J., Dekkers, M. J., Bozkurt, E. & Koopman, M. (2010). Exhumation with a twist: paleomagnetic constraints on the evolution of the Menderes metamorphic core complex, western Turkey. Tectonics, 29(3), 1-33, Article TC3009.
  • Walters, R. J., Holley, B., Parsons & Wright T. J. (2011). Interseismic strai accumulation across the North Anatolian Fault from Envisat InSAR measurements. Geophysical Research Letters, 38(5), Article L05303. https://doi.org/10.1029/2010GL046443
  • Wang, H., Wright, T. J. & Biggs, J. (2009). Interseismic slip rate of the northwestern xianshuihe fault from insar data. Geophysical Research Letters, 36(3), Article L03302. https://doi.org/10.1029/2008GL036560
  • Weiss, J. R., Walters, R. J., Morishita, Y., Wright, T. J., Lazecky, M., Wang, H., … & Parsons, B. (2020). High‐resolution surface velocities and strain for Anatolia from Sentinel‐1 InSAR and GNSS data. Geophysical Research Letters, 47(17), Article e2020GL087376. https://doi.org/10.1029/2020GL087376
  • Yagüe-Martínez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R., Shau, R., Geudtner, D., Eineder, M. & Bamler, R. (2016). Interferometric processing of Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2220-2234. https://doi.org/10.1109/TGRS.2015.2497902
  • Yeats, R. S., Sieh, K. ve Allen, C. R. (2006). Deprem Jeolojisi (Çev: R. Demirtaş ve K. Kayabalı). Ankara: Gazi Kitabevi. (Orijinal yayın tarihi: 1997).
  • Yen, J. Y., Lu, C. H., Chung-Pai, C., Hooper, A. J., Chang, Y. H., Liang, W. T., … & Chen, K.-S. (2011). Investigating active deformation in the northern Longitudinal Valley and City of Hualien in eastern Taiwan using persistent scatterer and small-baseline SAR interferometry. Terrestrial Atmospheric and Oceanic Sciences. 22, 291-304. https://doi.org/10.3319/TAO.2010.10.25.01(TT)
  • Yılmaz, Y., Genç, Ş. C., Gürer, O. F., Bozcu, M., Yılmaz, K. ve Karacık, Z., Altunkaynak, Ş. & Elmas, A. (2000). When did the western Anatolian grabens begin to develop?. In E. Bozkurt, J. A. Winchester & J. D. A. Piper (Eds.), Tectonics and Magmatism in Turkey and the Surrounding Area. Geological Society of London, Special Publication, 173, 353-384. https://doi.org/10.1144/GSL.SP.2000.173.01.17
  • Zanchi, A. & Angelier, J. (1993). Seismotectonics of western Anatolia: regional stress orientation from geophysical and geological data. Tectonophysics, 222(2), 259-274.
  • Zhang, Y., Meng, X., Chen, G., Qiao, L., Zeng, R. & Chang, J. (2016). Detection of geohazards in the Bailong River Basin using synthetic aperture radar interferometry. Landslides, 13(5), 1273-1284.
  • Zhu, L., Mitchell, B. J., Akyol, N., Cemen, I. & Kekovali, K. (2006). Crustal thickness variations in the Aegean region and implications for the extension of continental crust. Journal of Geophysical Research: Solid Earth, 111(B1), Article B01301. https://doi.org/10.1029/2005JB003770
There are 180 citations in total.

Details

Primary Language Turkish
Subjects Photogrammetry and Remote Sensing, Natural Hazards, Structural Geology and Tectonics
Journal Section Research Article
Authors

Semih Eski 0000-0002-2526-2571

Hasan Sözbilir 0000-0002-3777-4830

Project Number Proje Yok
Early Pub Date December 28, 2023
Publication Date July 28, 2024
Submission Date August 14, 2023
Acceptance Date November 16, 2023
Published in Issue Year 2024 Volume: 67 Issue: 4

Cite

APA Eski, S., & Sözbilir, H. (2024). Gediz (Alaşehir) Grabeni’nde Gelişen A-Sismik Yüzey Deformasyonların Kökeni. Türkiye Jeoloji Bülteni, 67(4), 31-62. https://doi.org/10.25288/tjb.1342834
AMA Eski S, Sözbilir H. Gediz (Alaşehir) Grabeni’nde Gelişen A-Sismik Yüzey Deformasyonların Kökeni. Geol. Bull. Turkey. July 2024;67(4):31-62. doi:10.25288/tjb.1342834
Chicago Eski, Semih, and Hasan Sözbilir. “Gediz (Alaşehir) Grabeni’nde Gelişen A-Sismik Yüzey Deformasyonların Kökeni”. Türkiye Jeoloji Bülteni 67, no. 4 (July 2024): 31-62. https://doi.org/10.25288/tjb.1342834.
EndNote Eski S, Sözbilir H (July 1, 2024) Gediz (Alaşehir) Grabeni’nde Gelişen A-Sismik Yüzey Deformasyonların Kökeni. Türkiye Jeoloji Bülteni 67 4 31–62.
IEEE S. Eski and H. Sözbilir, “Gediz (Alaşehir) Grabeni’nde Gelişen A-Sismik Yüzey Deformasyonların Kökeni”, Geol. Bull. Turkey, vol. 67, no. 4, pp. 31–62, 2024, doi: 10.25288/tjb.1342834.
ISNAD Eski, Semih - Sözbilir, Hasan. “Gediz (Alaşehir) Grabeni’nde Gelişen A-Sismik Yüzey Deformasyonların Kökeni”. Türkiye Jeoloji Bülteni 67/4 (July 2024), 31-62. https://doi.org/10.25288/tjb.1342834.
JAMA Eski S, Sözbilir H. Gediz (Alaşehir) Grabeni’nde Gelişen A-Sismik Yüzey Deformasyonların Kökeni. Geol. Bull. Turkey. 2024;67:31–62.
MLA Eski, Semih and Hasan Sözbilir. “Gediz (Alaşehir) Grabeni’nde Gelişen A-Sismik Yüzey Deformasyonların Kökeni”. Türkiye Jeoloji Bülteni, vol. 67, no. 4, 2024, pp. 31-62, doi:10.25288/tjb.1342834.
Vancouver Eski S, Sözbilir H. Gediz (Alaşehir) Grabeni’nde Gelişen A-Sismik Yüzey Deformasyonların Kökeni. Geol. Bull. Turkey. 2024;67(4):31-62.

Instructions for Authors: http://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php
Ethical Statement and Copyrighy Form:  https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php