Research Article
BibTex RIS Cite

Gürlevik Tufa Şelalesi: Fasiyes Özellikleri, Depolanma Sistemleri ve Jeomiras Potansiyeli (Erzincan, Doğu Anadolu) / Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia)

Year 2026, Volume: 68 Issue: 2, 1 - 24
https://doi.org/10.25288/tjb.1646179

Abstract

Erzincan (Doğu Anadolu) çek-ayır havzasının güneydoğusunda yer alan Gürlevik tufaları, akarsu ortamında gelişmiş karakteristik bir şelale tipi depolanma ürünüdür. Tufalar, üç farklı seviyede basamaklar şeklinde oluşmuştur. Ancak, Gürlevik tufa çökellerinin fasiyes özellikleri ve depolanma sistemi tam olarak bilinememektedir. Bu çalışma, tektonik olarak aktif olan bu havzada tufa formasyonun gelişimini araştırmayı ve fasiyes değişimlerini aydınlatmayı amaçlamaktadır. Bu amaçla, arazi çalışmaları kapsamında yedi adet ölçülü stratigrafik kesit alınmış ve bu ölçülü stratigrafik kesitlerden litofasiyesler morfolojik özellikleri, mikroskobik ve biyolojik içerikleri temel alınarak tanımlanmış ve yorumlanmıştır. Fasiyes analizlerine göre, altı litofasiyes tanımlanmış ve iki çökelme sistemi (tünek tipi/şelale ve baraj-set) belirlenmiştir. Anıtsal bir görünüm sunan bu şelale tufa birikimi, bölgedeki aktif tektonizma (diri faylar) ve iklimsel faktörlerin bir sonucudur. Gürlevik tufaları, doğal sit alanı olup koruma altına alınmıştır. Gerçekleştirilen bu ön çalışma iklim değişikliklerini yüksek hassasiyette kayıt altına alan bu sedimanter kayaçların jeolojik öneminin yanı sıra korunarak gelecek kuşaklara aktarılması hususundaki jeolojik miras potansiyeline de dikkat çekmektedir.

References

  • Akpınar, Z., Gürsoy, H., Tatar, O., Büyüksaraç, A., Koçbulut, F. & Piper. J. D. A. (2016). Geophysical analysis of fault geometry and volcanic activity in the Erzincan Basin, Central Turkey: Complex evolution of a mature pull-apart basin. Journal of Asian Earth Sciences, 116, 97–114. https://doi.org/10.1016/j.jseaes.2015.11.005
  • Aktimur, H. T., Sarıarslan, M., Keçer, M., Turşucu, A., Örçen, S., Yurdakul, M. E., Mutlu, G., Aktimur, S. ve Yıldırım, T. (1995). Erzincan dolayının jeolojisi (Report no: 9792 (unpublished)). MTA, Ankara.
  • Arenas, C., Gutiérrez, F., Osácar, C. & Sancho, C. (2000). Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro Depression, NE Spain. Sedimentology, 47, 883-909.
  • Arenas-Abad, C., Vázquez-Urbez, M., Pardo-Tirapu, G. & Sancho-Marcén, C. (2010). Fluvial and associated carbonate deposits. In Alonso-Zarza, A. M., Tanner, L. H. (Eds.), Carbonates in Continental Settings. Facies, Environments and Processes, Developments in Sedimentology (pp. 133-175), vol. 61. Elsevier, Amsterdam. https://doi.org/10.1016/S0070-4571(09)06103-2
  • Aydın, O. L., Bektaş, O., Büyüksaraç, A. & Yılmaz, H. (2019). 3D Modelling and Tectonic Interpretation of the Erzincan Basin (Turkey) using Potential Field Data. Earth Sciences Research Journal, 23(1), 57-66. https://doi.org/10.15446/esrj.v23n1.71090
  • Barka A. & Gülen L. (1989). Complex evolution of the Erzincan basin (Western Turkey). Journal of Structural Geology, 11(3), 275-283.
  • Bozkurt, E. (2001). Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14, 3–30, https://doi.org/10.1016/S0985-3111(01)01066-X
  • Capezzuoli, E., Gandin, A. & Pedley, M. (2014). Decoding tufa and travertine (freshwater carbonates) in the sedimentary record: the state of the art. Sedimentology, 61(1), 1–21. https://doi.org/10.1111/sed.12075
  • Çiftçi, Y. & Güngör, Y. (2016). Proposals for the Standard Presentation of Elements of Natural and Cultural Heritage within the Scope of Geopark Projects. MTA Dergisi, 153, 223-238.
  • Çiftçi, Y. & Güngör, Y. (2021). Jeolojik Miras Envanter Çalışmaları: Yeni Yaklaşımlar. S. Er (Ed.), Jeolojik Miras: Kavramlar, Mevzuat ve Uygulama Örnekleri (ss. 62-104). Pınar Yayınevi-Jeoloji Mühendisleri Odası, İstanbul.
  • Dipova, N. & Doyuran, V. (2006). Characterization of the Antalya (Turkey) tufa deposits. Carbonates and Evaporites, 21, 144–160. https://doi.org/10.1007/BF03175664
  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In W. E. Ham (Editor), Classification of Carbonate Rocks (pp.: 108-121). Mem. Am. Assoc. Petrol. Geol., 1.
  • Emre, O., Duman, T.Y., Kondo, H. Olgun, S., Özalp, S., Elmacı, H. (2012). 1:1250.000 Scale Active Fault Map Series of Turkey, Erzincan (NJ 37-3) Quadrangle. Serial Number: 44. General Directorate of Mineral Research and Exploration (MTA), Ankara-Turkey.
  • Folk, R. L. (1959). Practical petrographic classification of limestones. American Association of Petroleum Geologists Bulletin, 43, 1-38.
  • Folk, R. L. (1962). Spectral subdivision of limestone types. In Ham,W.E. (Ed.), Classification of carbonate rocks (pp. 62–84). American Association of Petroleum Geologist Memoirs 1, Tulsa.
  • Ford, T.D. & Pedley, H.M. (1996). A review of tufa and travertine deposits of the world. Earth-Science Reviews, 41(3-4), 117-175. https://doi.org/10.1016/S0012-8252(96)00030-X
  • Gedik, A. (2008). Kemah-Erzincan Çayırlı yöresi Tersiyer Birimlerinin Jeolojisi ve Petrol Kaynak Kaya Özellikleri. MTA Dergisi, 137, 1-26 (in Turkish).
  • Glover, C. & Robertson, A. H. (2003). Origin of tufa (cool-water carbonate) and related terraces in the Antalya areas, SW Turkey. Geological Journal, 38, 1-30.
  • Golubić, S., Violante, C., Plenković-Moraj, A. & Grgasović, T. (2008). Travertines and calcareous tufa deposits: an insight into diagenesis. Geologia Croatica, 61(2-3), 363-378.
  • Goudie, A. S. (2020). Waterfalls: Forms, Distribution, Processes and Rates of Recession. Quaestiones Geographicae, 39(1), 59–77. https://doi.org/10.2478/quageo-2020-0005
  • Gradziñski, M. (2010). Factors controlling growth of modern tufa: results of a field experiment. Geological Society Special Publications, 336, 143–191. https://doi.org/10.1144/SP336.8
  • Gradziñski, M., Hercman, H., Jaoekiewicz, M. & Szczurek, S. (2013). Holocene tufa in the Slovak Karst: facies, sedimentary environments and depositional history. Geological Quaterly, 57(4), 769-788. https://doi.org/10.7306/gq.1131
  • Güngör, Y. (2021). Jeoloji ve Sürdürülebilir Kalkınma. MTA Doğal Kaynaklar Ekonomi Bülteni, 31, 53-59.
  • Güngör, Y. ve Angı, O. S. (2021). Kültürel Jeoloji ve Jeoturizm içerisinde jeolojik mirasın yeri I. S. Er (Ed.), Jeolojik Miras: Kavramlar, Mevzuat ve Uygulama Örnekleri (ss. 105-112). Pınar Yayınevi-Jeoloji Mühendisleri Odası, İstanbul.
  • Horvatinčić, N., Čalić, R. & Geyh, M. A. (2000). Interglacial growth of tufa in Croatia. Quaternary Research, 53, 185-195.
  • Kaypak, B. & Eyidoğan, H. (2005). One-dimensional crustal structure of the Erzincan basin, Eastern Turkey and relocations of the 1992 Erzincan earthquake (Ms=6.8) aftershock sequence. Physics of the Earth and Planetary Interiors, 151(1–2), 1-20.
  • Kazancı, N. (2010). Dünyada ve Türkiye’de Jeosit-Jeopark-Jeomiras Olgusuna Yaklaşımlar. Kızılcahamam Çamlıdere Jeopark ve Jeoturizm Projesi Raporu, 76, Ankara.
  • Koçyiğit, A. (1990). Üç Kenet Kuşağının Erzincan Batısındaki (KD Türkiye) Yapısal ilişkileri: Karakaya, İç Toros ve Erzincan Kenetleri. Türkiye 8. Petrol Kongresi Bildiriler Kitabı, 152-160.
  • Koşun, E., Sarıgül, A. ve Varol, B. (2005). Antalya Tufalarının litofasiyes özellikleri. MTA Dergisi, 130, 57-70.
  • Okay, A. I. & Tüysüz, O. (1999). Tethyan Sutures of Northern Turkey. In Durand B., Jolivet G., Horvoth F., Serrane M (Eds.), The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen, Geological Society, London, Special Publications., 156, 475-515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  • Ordóñez, S., González Martín, J.A., García del Cura, M.A. & Pedley, H.M. (2005). Temperate and semi-arid tufas in Pleistocene to Recent fluvial barrage system in the Mediterranean area: the Ruidera Lakes Natural Park (Central Spain). Geomorphology, 69, 332-350.
  • Özkul, M., Gökgöz, A. & Horvatinčić, N. (2010). Depositional properties and geochemistry of Holocene perched springline tufa deposits and associated spring waters: a case study from the Denizli province, Western Turkey. In Pedley, H.M. (Ed.), Tufas and Speleothems: Unravelling the Microbial and Physical Controls: the Geological Society, London. Special Publications, 336, 245-262. https://doi.org/10.1144/SP336.13
  • Pedley, H. M. (1990). Classification and Environmental Models of Cool Freshwater Tufas. Sedimentary Geology, 68, 143-154.
  • Pedley, M., González Martín, J.A., Ordóñez, S. & García del Cura, M.A. (2003). Sedimentology of Quaternary perched springline and paludal tufas: criteria for recognition, with examples from Guadalajara Province, Spain. Sedimentology, 50, 23-44.
  • Pedley, H. M. (2009). Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology Special Volume 56, 221-246.
  • Pentecost, A. (1981). The tufa deposits of the Malham district, North Yorkshire. Field Studies 5, 365–387.
  • Pentecost, A. & Whitton, B. A. (2000). Limestones. In B.A. Whitton & M. Potts (Eds.), The Ecology of Cyanobacteria (pp.: 257–279). Kluwer, Amsterdam.
  • ProGeo Group (1998). A first attempt at a geosites framework for Europe - an IUGS initiative to support recognition of World Heritage and European geodiversity. Geologica Balcanica, 28, p.: 532.
  • Shiraishi, F., Reimer, A., Bissett, A., Beer, D. de & Arp, G. (2008). Microbial effects on biofilm calcification, ambient water chemistry and stable isotope records in a highly super saturated set ting (Westerhöfer Bach, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 262, 91–106.
  • Tagliasacchi, E. & Kayseri-Özer, M.S. (2020). Multidisciplinary approach for palaeoclimatic signals of the non-marine carbonates: The case of the Sarıkavak tufa deposits (Afyon, SW-Turkey). Quaternary International, 544, 41-56. https://doi.org/10.1016/j.quaint.2019.12.016
  • Tatar, O., Akpınar, Z., Gürsoy, H., Piper, J. D. A., Koçbulut, F., Mesci, B. L., Polat, A. & Roberts, A. P. (2013). Palaeomagnetic evidence for the Neotectonic evolution of the Erzincan Basin, North Anatolian Fault Zone, Turkey. Journal of Geodynamics, 65, 244– 258. https://doi.org/10.1016/j.jog.2012.03.009
  • Toker, E. (2017). Quaternary fluvial tufas of Sarıkavak area, southwestern Turkey: Facies and depositional systems. Quaternary International, 437, (Part A), 37-50. https://doi.org/10.1016/j.quaint.2016.06.034
  • Tüysüz, O. (1990). Tectonic evolution of a part of the Tethyside orogenic collage: the Kargı Massif, northern Turkey. Tectonics, 9(1), 141-160. https://doi.org/10.1029/TC009i001p00141
  • Tüysüz, O. (1992). Erzincan Çevresinin Jeolojisi, (Yerbilimci Gözüyle Erzincan Depremi, Dünü-Bugünü-Yarını ve Türkiye Deprem Sorunu, (Derleyen; Ahmet Ercan). İ.T.Ü. Maden Fak. Jeofizik Bölümü ve Jeoloji Müh. Böl. Ortak Oturum Bildirileri, İ.T.Ü. İstanbul.
  • Uysal, A. (2024). Erzincan Ovası ve Çevresinin Morfotektonik Özellikleri ve Deprem Analizi. [Yayımlanmamış Doktora Tezi]. Elazığ, Fırat Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Uysal, A., Sunkar, M. (2024). Girlevik Şelalesi ve Traverten Taraçasının Oluşumu (Erzincan). Kıranşan, K. (Ed.), Fiziki coğrafya alanında uluslararası araştırmalar-II (s: 117-145). Eğitim Yayınevi.
  • Uzun, A., Bahadır, M., Karaer, F., Gürgöze, S. & Vural, B. (2023). Gürleyik Creek Tufa Forms, Eskişehir/Türkiye. The most Recent Studies in science and art (s.: 1-9). Gece Publishing.
  • Vázquez-Urbez, M., Pardo, G., Arenas, C. & Sancho, C. (2011). Fluvial diffluence episodes reflected in the Pleistocene tufa deposits of the River Piedra (Iberian Range, NE Spain). Geomorphology, 125, 1-10. https://doi.org/10.1016/j.geomorph.2010.07.022
  • Villes, H.A. & Goudie, A. S. (1990). Tufas, travertine and allied carbonate deposits. Progress in Physical Geography Earth and Environment. 14(1), 19-41. https://doi.org/10.1177/030913339001400102
  • Violante, C., Ferreri, V., D’Argenio, B.& Golubic, S. (1994). Quaternary travertines at Rochetta a Volturno (Isernia, Central Italy). Facies analysis and sedimentary model of an organogenic carbonate system. In PreMeeting Fieldtrip Guidebook, A1, International Association of Sedimentologists, Ischia’94, 15th Regional Meeting (pp.: 3223), Italy.
  • Wimbledon, W. A. P. (1996). National site election, a stop on the road to a European GeositeList. Geologica Balcanica, 26, 15–27.

Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia)

Year 2026, Volume: 68 Issue: 2, 1 - 24
https://doi.org/10.25288/tjb.1646179

Abstract

Gürlevik tufa, located in the southeast of the Erzincan (East Anatolia) pull-apart basin, represents a typical cascade/waterfall deposit developed in a fluvial environment. Calcareous tufa formed at three different levels. However, the facies properties and depositional system of the Gürlevik tufa formation remain unknown. This study aims to investigate the evolution of the tufa deposits and to clarify their facies changes in this tectonically active basin. For this purpose, seven measured sedimentary logs were obtained from field studies, and the lithofacies were described and interpreted based on their morphological properties, microscopic and biological contents. According to facies analysis, six lithofacies were identified and two depositional systems (perched springline/cascade and barrage-dammed) were determined. The monumental cascade/waterfall tufa accumulation is a consequence active tectonic and climatic factors in the region. Gürlevik tufa deposits are located in a protected natural site. This preliminary study draws attention to the geological importance of these sedimentary rocks, which record climate changes with high precision, as well as their geological heritage potential, that should be preserved and transferred to future generations.

References

  • Akpınar, Z., Gürsoy, H., Tatar, O., Büyüksaraç, A., Koçbulut, F. & Piper. J. D. A. (2016). Geophysical analysis of fault geometry and volcanic activity in the Erzincan Basin, Central Turkey: Complex evolution of a mature pull-apart basin. Journal of Asian Earth Sciences, 116, 97–114. https://doi.org/10.1016/j.jseaes.2015.11.005
  • Aktimur, H. T., Sarıarslan, M., Keçer, M., Turşucu, A., Örçen, S., Yurdakul, M. E., Mutlu, G., Aktimur, S. ve Yıldırım, T. (1995). Erzincan dolayının jeolojisi (Report no: 9792 (unpublished)). MTA, Ankara.
  • Arenas, C., Gutiérrez, F., Osácar, C. & Sancho, C. (2000). Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro Depression, NE Spain. Sedimentology, 47, 883-909.
  • Arenas-Abad, C., Vázquez-Urbez, M., Pardo-Tirapu, G. & Sancho-Marcén, C. (2010). Fluvial and associated carbonate deposits. In Alonso-Zarza, A. M., Tanner, L. H. (Eds.), Carbonates in Continental Settings. Facies, Environments and Processes, Developments in Sedimentology (pp. 133-175), vol. 61. Elsevier, Amsterdam. https://doi.org/10.1016/S0070-4571(09)06103-2
  • Aydın, O. L., Bektaş, O., Büyüksaraç, A. & Yılmaz, H. (2019). 3D Modelling and Tectonic Interpretation of the Erzincan Basin (Turkey) using Potential Field Data. Earth Sciences Research Journal, 23(1), 57-66. https://doi.org/10.15446/esrj.v23n1.71090
  • Barka A. & Gülen L. (1989). Complex evolution of the Erzincan basin (Western Turkey). Journal of Structural Geology, 11(3), 275-283.
  • Bozkurt, E. (2001). Neotectonics of Turkey - a synthesis. Geodinamica Acta, 14, 3–30, https://doi.org/10.1016/S0985-3111(01)01066-X
  • Capezzuoli, E., Gandin, A. & Pedley, M. (2014). Decoding tufa and travertine (freshwater carbonates) in the sedimentary record: the state of the art. Sedimentology, 61(1), 1–21. https://doi.org/10.1111/sed.12075
  • Çiftçi, Y. & Güngör, Y. (2016). Proposals for the Standard Presentation of Elements of Natural and Cultural Heritage within the Scope of Geopark Projects. MTA Dergisi, 153, 223-238.
  • Çiftçi, Y. & Güngör, Y. (2021). Jeolojik Miras Envanter Çalışmaları: Yeni Yaklaşımlar. S. Er (Ed.), Jeolojik Miras: Kavramlar, Mevzuat ve Uygulama Örnekleri (ss. 62-104). Pınar Yayınevi-Jeoloji Mühendisleri Odası, İstanbul.
  • Dipova, N. & Doyuran, V. (2006). Characterization of the Antalya (Turkey) tufa deposits. Carbonates and Evaporites, 21, 144–160. https://doi.org/10.1007/BF03175664
  • Dunham, R. J. (1962). Classification of carbonate rocks according to depositional texture. In W. E. Ham (Editor), Classification of Carbonate Rocks (pp.: 108-121). Mem. Am. Assoc. Petrol. Geol., 1.
  • Emre, O., Duman, T.Y., Kondo, H. Olgun, S., Özalp, S., Elmacı, H. (2012). 1:1250.000 Scale Active Fault Map Series of Turkey, Erzincan (NJ 37-3) Quadrangle. Serial Number: 44. General Directorate of Mineral Research and Exploration (MTA), Ankara-Turkey.
  • Folk, R. L. (1959). Practical petrographic classification of limestones. American Association of Petroleum Geologists Bulletin, 43, 1-38.
  • Folk, R. L. (1962). Spectral subdivision of limestone types. In Ham,W.E. (Ed.), Classification of carbonate rocks (pp. 62–84). American Association of Petroleum Geologist Memoirs 1, Tulsa.
  • Ford, T.D. & Pedley, H.M. (1996). A review of tufa and travertine deposits of the world. Earth-Science Reviews, 41(3-4), 117-175. https://doi.org/10.1016/S0012-8252(96)00030-X
  • Gedik, A. (2008). Kemah-Erzincan Çayırlı yöresi Tersiyer Birimlerinin Jeolojisi ve Petrol Kaynak Kaya Özellikleri. MTA Dergisi, 137, 1-26 (in Turkish).
  • Glover, C. & Robertson, A. H. (2003). Origin of tufa (cool-water carbonate) and related terraces in the Antalya areas, SW Turkey. Geological Journal, 38, 1-30.
  • Golubić, S., Violante, C., Plenković-Moraj, A. & Grgasović, T. (2008). Travertines and calcareous tufa deposits: an insight into diagenesis. Geologia Croatica, 61(2-3), 363-378.
  • Goudie, A. S. (2020). Waterfalls: Forms, Distribution, Processes and Rates of Recession. Quaestiones Geographicae, 39(1), 59–77. https://doi.org/10.2478/quageo-2020-0005
  • Gradziñski, M. (2010). Factors controlling growth of modern tufa: results of a field experiment. Geological Society Special Publications, 336, 143–191. https://doi.org/10.1144/SP336.8
  • Gradziñski, M., Hercman, H., Jaoekiewicz, M. & Szczurek, S. (2013). Holocene tufa in the Slovak Karst: facies, sedimentary environments and depositional history. Geological Quaterly, 57(4), 769-788. https://doi.org/10.7306/gq.1131
  • Güngör, Y. (2021). Jeoloji ve Sürdürülebilir Kalkınma. MTA Doğal Kaynaklar Ekonomi Bülteni, 31, 53-59.
  • Güngör, Y. ve Angı, O. S. (2021). Kültürel Jeoloji ve Jeoturizm içerisinde jeolojik mirasın yeri I. S. Er (Ed.), Jeolojik Miras: Kavramlar, Mevzuat ve Uygulama Örnekleri (ss. 105-112). Pınar Yayınevi-Jeoloji Mühendisleri Odası, İstanbul.
  • Horvatinčić, N., Čalić, R. & Geyh, M. A. (2000). Interglacial growth of tufa in Croatia. Quaternary Research, 53, 185-195.
  • Kaypak, B. & Eyidoğan, H. (2005). One-dimensional crustal structure of the Erzincan basin, Eastern Turkey and relocations of the 1992 Erzincan earthquake (Ms=6.8) aftershock sequence. Physics of the Earth and Planetary Interiors, 151(1–2), 1-20.
  • Kazancı, N. (2010). Dünyada ve Türkiye’de Jeosit-Jeopark-Jeomiras Olgusuna Yaklaşımlar. Kızılcahamam Çamlıdere Jeopark ve Jeoturizm Projesi Raporu, 76, Ankara.
  • Koçyiğit, A. (1990). Üç Kenet Kuşağının Erzincan Batısındaki (KD Türkiye) Yapısal ilişkileri: Karakaya, İç Toros ve Erzincan Kenetleri. Türkiye 8. Petrol Kongresi Bildiriler Kitabı, 152-160.
  • Koşun, E., Sarıgül, A. ve Varol, B. (2005). Antalya Tufalarının litofasiyes özellikleri. MTA Dergisi, 130, 57-70.
  • Okay, A. I. & Tüysüz, O. (1999). Tethyan Sutures of Northern Turkey. In Durand B., Jolivet G., Horvoth F., Serrane M (Eds.), The Mediterranean Basins: Tertiary Extension Within the Alpine Orogen, Geological Society, London, Special Publications., 156, 475-515. https://doi.org/10.1144/GSL.SP.1999.156.01.22
  • Ordóñez, S., González Martín, J.A., García del Cura, M.A. & Pedley, H.M. (2005). Temperate and semi-arid tufas in Pleistocene to Recent fluvial barrage system in the Mediterranean area: the Ruidera Lakes Natural Park (Central Spain). Geomorphology, 69, 332-350.
  • Özkul, M., Gökgöz, A. & Horvatinčić, N. (2010). Depositional properties and geochemistry of Holocene perched springline tufa deposits and associated spring waters: a case study from the Denizli province, Western Turkey. In Pedley, H.M. (Ed.), Tufas and Speleothems: Unravelling the Microbial and Physical Controls: the Geological Society, London. Special Publications, 336, 245-262. https://doi.org/10.1144/SP336.13
  • Pedley, H. M. (1990). Classification and Environmental Models of Cool Freshwater Tufas. Sedimentary Geology, 68, 143-154.
  • Pedley, M., González Martín, J.A., Ordóñez, S. & García del Cura, M.A. (2003). Sedimentology of Quaternary perched springline and paludal tufas: criteria for recognition, with examples from Guadalajara Province, Spain. Sedimentology, 50, 23-44.
  • Pedley, H. M. (2009). Tufas and travertines of the Mediterranean region: a testing ground for freshwater carbonate concepts and developments. Sedimentology Special Volume 56, 221-246.
  • Pentecost, A. (1981). The tufa deposits of the Malham district, North Yorkshire. Field Studies 5, 365–387.
  • Pentecost, A. & Whitton, B. A. (2000). Limestones. In B.A. Whitton & M. Potts (Eds.), The Ecology of Cyanobacteria (pp.: 257–279). Kluwer, Amsterdam.
  • ProGeo Group (1998). A first attempt at a geosites framework for Europe - an IUGS initiative to support recognition of World Heritage and European geodiversity. Geologica Balcanica, 28, p.: 532.
  • Shiraishi, F., Reimer, A., Bissett, A., Beer, D. de & Arp, G. (2008). Microbial effects on biofilm calcification, ambient water chemistry and stable isotope records in a highly super saturated set ting (Westerhöfer Bach, Germany). Palaeogeography, Palaeoclimatology, Palaeoecology, 262, 91–106.
  • Tagliasacchi, E. & Kayseri-Özer, M.S. (2020). Multidisciplinary approach for palaeoclimatic signals of the non-marine carbonates: The case of the Sarıkavak tufa deposits (Afyon, SW-Turkey). Quaternary International, 544, 41-56. https://doi.org/10.1016/j.quaint.2019.12.016
  • Tatar, O., Akpınar, Z., Gürsoy, H., Piper, J. D. A., Koçbulut, F., Mesci, B. L., Polat, A. & Roberts, A. P. (2013). Palaeomagnetic evidence for the Neotectonic evolution of the Erzincan Basin, North Anatolian Fault Zone, Turkey. Journal of Geodynamics, 65, 244– 258. https://doi.org/10.1016/j.jog.2012.03.009
  • Toker, E. (2017). Quaternary fluvial tufas of Sarıkavak area, southwestern Turkey: Facies and depositional systems. Quaternary International, 437, (Part A), 37-50. https://doi.org/10.1016/j.quaint.2016.06.034
  • Tüysüz, O. (1990). Tectonic evolution of a part of the Tethyside orogenic collage: the Kargı Massif, northern Turkey. Tectonics, 9(1), 141-160. https://doi.org/10.1029/TC009i001p00141
  • Tüysüz, O. (1992). Erzincan Çevresinin Jeolojisi, (Yerbilimci Gözüyle Erzincan Depremi, Dünü-Bugünü-Yarını ve Türkiye Deprem Sorunu, (Derleyen; Ahmet Ercan). İ.T.Ü. Maden Fak. Jeofizik Bölümü ve Jeoloji Müh. Böl. Ortak Oturum Bildirileri, İ.T.Ü. İstanbul.
  • Uysal, A. (2024). Erzincan Ovası ve Çevresinin Morfotektonik Özellikleri ve Deprem Analizi. [Yayımlanmamış Doktora Tezi]. Elazığ, Fırat Üniversitesi, Sosyal Bilimler Enstitüsü.
  • Uysal, A., Sunkar, M. (2024). Girlevik Şelalesi ve Traverten Taraçasının Oluşumu (Erzincan). Kıranşan, K. (Ed.), Fiziki coğrafya alanında uluslararası araştırmalar-II (s: 117-145). Eğitim Yayınevi.
  • Uzun, A., Bahadır, M., Karaer, F., Gürgöze, S. & Vural, B. (2023). Gürleyik Creek Tufa Forms, Eskişehir/Türkiye. The most Recent Studies in science and art (s.: 1-9). Gece Publishing.
  • Vázquez-Urbez, M., Pardo, G., Arenas, C. & Sancho, C. (2011). Fluvial diffluence episodes reflected in the Pleistocene tufa deposits of the River Piedra (Iberian Range, NE Spain). Geomorphology, 125, 1-10. https://doi.org/10.1016/j.geomorph.2010.07.022
  • Villes, H.A. & Goudie, A. S. (1990). Tufas, travertine and allied carbonate deposits. Progress in Physical Geography Earth and Environment. 14(1), 19-41. https://doi.org/10.1177/030913339001400102
  • Violante, C., Ferreri, V., D’Argenio, B.& Golubic, S. (1994). Quaternary travertines at Rochetta a Volturno (Isernia, Central Italy). Facies analysis and sedimentary model of an organogenic carbonate system. In PreMeeting Fieldtrip Guidebook, A1, International Association of Sedimentologists, Ischia’94, 15th Regional Meeting (pp.: 3223), Italy.
  • Wimbledon, W. A. P. (1996). National site election, a stop on the road to a European GeositeList. Geologica Balcanica, 26, 15–27.
There are 51 citations in total.

Details

Primary Language English
Subjects Stratigraphy
Journal Section Makaleler - Articles
Authors

Yakup Çelik This is me 0000-0002-2150-852X

Ezher Tagliasacchi 0000-0002-1774-5012

Early Pub Date April 16, 2025
Publication Date
Submission Date February 25, 2025
Acceptance Date March 12, 2025
Published in Issue Year 2026 Volume: 68 Issue: 2

Cite

APA Çelik, Y., & Tagliasacchi, E. (2025). Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia). Türkiye Jeoloji Bülteni, 68(2), 1-24. https://doi.org/10.25288/tjb.1646179
AMA Çelik Y, Tagliasacchi E. Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia). Geol. Bull. Turkey. April 2025;68(2):1-24. doi:10.25288/tjb.1646179
Chicago Çelik, Yakup, and Ezher Tagliasacchi. “Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia)”. Türkiye Jeoloji Bülteni 68, no. 2 (April 2025): 1-24. https://doi.org/10.25288/tjb.1646179.
EndNote Çelik Y, Tagliasacchi E (April 1, 2025) Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia). Türkiye Jeoloji Bülteni 68 2 1–24.
IEEE Y. Çelik and E. Tagliasacchi, “Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia)”, Geol. Bull. Turkey, vol. 68, no. 2, pp. 1–24, 2025, doi: 10.25288/tjb.1646179.
ISNAD Çelik, Yakup - Tagliasacchi, Ezher. “Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia)”. Türkiye Jeoloji Bülteni 68/2 (April 2025), 1-24. https://doi.org/10.25288/tjb.1646179.
JAMA Çelik Y, Tagliasacchi E. Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia). Geol. Bull. Turkey. 2025;68:1–24.
MLA Çelik, Yakup and Ezher Tagliasacchi. “Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia)”. Türkiye Jeoloji Bülteni, vol. 68, no. 2, 2025, pp. 1-24, doi:10.25288/tjb.1646179.
Vancouver Çelik Y, Tagliasacchi E. Gürlevik Tufa Waterfall: Facies Characteristics, Depositional Systems and Geoheritage Potential (Erzincan, East Anatolia). Geol. Bull. Turkey. 2025;68(2):1-24.

Instructions for Authors: http://www.jmo.org.tr/yayinlar/tjb_yazim_kurallari.php
Ethical Statement and Copyrighy Form:  https://www.jmo.org.tr/yayinlar/tjb_telif_etik_formlar.php