Conference Paper
BibTex RIS Cite

Accretive Canonical Type Quasi-Differential Operators for First Order

Year 2018, Volume: 10, 43 - 49, 29.12.2018

Abstract

It is known that a linear closed densely defined operator in any Hilbert space   is called accretive if its real part is non-negative and maximal accretive if it is accretive and it does not have any proper accretive extension [1].

Note that the study of abstract extension problems for operators on Hilbert spaces goes at least back to J.von Neumann [2] such that in [2] a full characterization of all selfadjoint extensions of a given closed symmetric operator with equal deficiency indices was investigated.  

Class of accretive operators is an important class of non-selfadjoint operators in the operator theory. Note that spectrum set of the accretive operators lies in right half-plane.

The maximal accretive extensions of the minimal operator generated by regular differential-operator expression in Hilbert space of vector-functions defined in one finite interval case and their spectral analysis have been studied by V. V. Levchuk [3].

In this work, using the method Calkin-Gorbachuk all maximal accretive extensions of the minimal operator generated by linear canonical type quasi-differential operator expression in the weighted Hilbert space of the vector functions defined at right semi-axis are described. Lastly, geometry of spectrum set of these type extensions will be investigated.

References

  • Arlinskii, Yu. M., On proper accretive extensions of positive linear relations , Ukrainian Mat. Zh. 47(6) (1995), 723-730.
  • Arlinskii, Yu. M., Abstract boundary conditions for maximal sectorial extensions of sectorial operators , Math. Nachr. 209 (2000), 5-36.
  • Arlinskii, Yu. M., Operator Methods for Boundary Value Problems, London Math. Soc. Lecture Note Ser., 404, Cambridge Univ. Press, Londan, 2012.
  • Arlinskii, Yu. M., Kovalev, Yu., Tsekanovskii, E., Accretive and sectorial extensions of nonnegative symmetric operators , Complex Anal. Oper. Theory 6 (2012), 677-718.
  • Arlinskii, Yu. M., Popov, A. B., m-Accretive extensions of a sectorial operator , Sbornik: Mathematics 204 (2013), 1085-1121.
  • Evans, W. D., On the extension problem for accretive di_erential operators, Journal of Functional Analysis 63 (1985), 276-298.
  • Fischbacher, C., The nonproper dissipative extensions of a dual pair , Trans. Amer. Math. Soc. 370 (2018), 8895-8920.
  • Gorbachuk, V. I., Gorbachuk, M. L., Boundary Value Problems for Operator Di_erential Equations, Kluwer Academic Publisher, Dordrecht, 1991.
  • Hörmander, L., On the theory of general partial di_erential operators, Acta Mathematica 94(1955), 161-248.
  • Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag Inc., New York, 1966.
  • Levchuk, V. V., Smooth maximally dissipative boundary-value problems for a parabolic equation in a Hilbert space, Ukrainian Mathematic Journal 35(4) (1983), 502-507.
  • Von Neumann, J., Allgemeine eigenwerttheorie hermitescher funktionaloperatoren, Math. Ann. 102 (1929-1931), 49-131.
Year 2018, Volume: 10, 43 - 49, 29.12.2018

Abstract

References

  • Arlinskii, Yu. M., On proper accretive extensions of positive linear relations , Ukrainian Mat. Zh. 47(6) (1995), 723-730.
  • Arlinskii, Yu. M., Abstract boundary conditions for maximal sectorial extensions of sectorial operators , Math. Nachr. 209 (2000), 5-36.
  • Arlinskii, Yu. M., Operator Methods for Boundary Value Problems, London Math. Soc. Lecture Note Ser., 404, Cambridge Univ. Press, Londan, 2012.
  • Arlinskii, Yu. M., Kovalev, Yu., Tsekanovskii, E., Accretive and sectorial extensions of nonnegative symmetric operators , Complex Anal. Oper. Theory 6 (2012), 677-718.
  • Arlinskii, Yu. M., Popov, A. B., m-Accretive extensions of a sectorial operator , Sbornik: Mathematics 204 (2013), 1085-1121.
  • Evans, W. D., On the extension problem for accretive di_erential operators, Journal of Functional Analysis 63 (1985), 276-298.
  • Fischbacher, C., The nonproper dissipative extensions of a dual pair , Trans. Amer. Math. Soc. 370 (2018), 8895-8920.
  • Gorbachuk, V. I., Gorbachuk, M. L., Boundary Value Problems for Operator Di_erential Equations, Kluwer Academic Publisher, Dordrecht, 1991.
  • Hörmander, L., On the theory of general partial di_erential operators, Acta Mathematica 94(1955), 161-248.
  • Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag Inc., New York, 1966.
  • Levchuk, V. V., Smooth maximally dissipative boundary-value problems for a parabolic equation in a Hilbert space, Ukrainian Mathematic Journal 35(4) (1983), 502-507.
  • Von Neumann, J., Allgemeine eigenwerttheorie hermitescher funktionaloperatoren, Math. Ann. 102 (1929-1931), 49-131.
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Pembe Ipek Al

Zameddin Ismaılov

Publication Date December 29, 2018
Published in Issue Year 2018 Volume: 10

Cite

APA Ipek Al, P., & Ismaılov, Z. (2018). Accretive Canonical Type Quasi-Differential Operators for First Order. Turkish Journal of Mathematics and Computer Science, 10, 43-49.
AMA Ipek Al P, Ismaılov Z. Accretive Canonical Type Quasi-Differential Operators for First Order. TJMCS. December 2018;10:43-49.
Chicago Ipek Al, Pembe, and Zameddin Ismaılov. “Accretive Canonical Type Quasi-Differential Operators for First Order”. Turkish Journal of Mathematics and Computer Science 10, December (December 2018): 43-49.
EndNote Ipek Al P, Ismaılov Z (December 1, 2018) Accretive Canonical Type Quasi-Differential Operators for First Order. Turkish Journal of Mathematics and Computer Science 10 43–49.
IEEE P. Ipek Al and Z. Ismaılov, “Accretive Canonical Type Quasi-Differential Operators for First Order”, TJMCS, vol. 10, pp. 43–49, 2018.
ISNAD Ipek Al, Pembe - Ismaılov, Zameddin. “Accretive Canonical Type Quasi-Differential Operators for First Order”. Turkish Journal of Mathematics and Computer Science 10 (December 2018), 43-49.
JAMA Ipek Al P, Ismaılov Z. Accretive Canonical Type Quasi-Differential Operators for First Order. TJMCS. 2018;10:43–49.
MLA Ipek Al, Pembe and Zameddin Ismaılov. “Accretive Canonical Type Quasi-Differential Operators for First Order”. Turkish Journal of Mathematics and Computer Science, vol. 10, 2018, pp. 43-49.
Vancouver Ipek Al P, Ismaılov Z. Accretive Canonical Type Quasi-Differential Operators for First Order. TJMCS. 2018;10:43-9.