Research Article
BibTex RIS Cite
Year 2019, Volume: 11 Issue: 2, 112 - 121, 31.12.2019

Abstract

References

  • Akgul, A., {\em A novel method for a fractional derivative with non-local and non-singular kernel}, Chaos, Solitons and Fractals, \textbf{114}(2018), 478--482.
  • Akgul, A., {\em On the solution of higher order difference equations, Mathematical Methods in the Applied Sciences}, \textbf{40(17)}(2016), 6165-6171.
  • Anguraj, A., Ramkumar, K., {\em Approximate controllability of semilinear stochastic integrodifferential system with nonlocal conditions}, fractal Fract, \textbf{2(4)}(2018), 29.
  • Arthi, G., Park, Ju H., Jung, H.Y., {\em Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion}, Communication in Nonlinear Science and Numerical Simulation, \textbf{32}(2016), 145--157.
  • Balachandran, K., Kim, J.H., Karthikeyan, S., {\em Controllability of semilinear stochastic integrodifferential equations}, Kybernetika, \textbf{43}(2007), 31--44.
  • Balachandran, K., Karthikeyan, S., {\em Controllability of stochastic integrodifferential systems}, Int. J. Control, \textbf{80}(2007), 486--491.
  • Balachandran, K., Leelamani, A., Kim, J.H., {\em Controllability of neutral functional evolution integrodifferential systems with infinite delay}, IMA J. Math. Control Inform, \textbf{25}(2008), 157--171.
  • Boufoussi, B., Hajji, S., {\em Neutral stochastic functional differential equation driven by a fractional Brownian motion in a Hilbert space}, Statist. Probab. Lett, \textbf{82}(2012), 1549--1558.
  • Chen, M., {\em Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motion}, Stoch. Dyn, \textbf{15}(2015), 1--16.
  • Diop, M.A., Sakthivel, R., Ndiaye, A.A., {\em Neutral stochastic integrodifferential equations driven by a fractional Brownian motion with impulsive effects and time varying delays}, Mediterr. J. Math, \textbf{13(5)}(2016), 2425--2442.
  • Grimmer, R.C., {\em Resolvent operators for integral equations in a Banach space}, Transactions of the American Mathematical Society, \textbf{273}(1982), 333--349.
  • Klamka, J., {\em Stochastic controllability of linear systems with delay in control}, Bull. Pol. Acad. Sci. Tech. Sci, \textbf{55}(2007), 23--29.
  • Klamka, J., {\em Controllability of dynamical systems}, A survey. Bull. Pol. Acad. Sci. Tech. Sci, \textbf{61}(2013), 221--229.
  • Lakhel, E., {\em Controllability of neutral stochastic functional integrodifferential equations driven by fractional Brownian motion}, Stoch. Anal. Appl, \textbf{34(3)}(2016), 427--440.
  • Lakhel, E., Hajji, S., {\em Existence and uniqueness of mild solutions to neutral stochastic functonal differential equations driven by a fractional Brownian motion with non-Lipschitz coefficients}, J. Numerical Mathematics and Stochastics, \textbf{7(1)}(2015), 14--29.
  • Park, J.Y., Balachandran, K., Arthi, G., {\em Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces}, Nonlinear Analysis: Hybrid Systems, \textbf{3}(2009), 184--194.
  • Ren, Y., Cheng, X., Sakthivel, R., {\em On time dependent stochastic evolution equations driven by fractional Brownian motion in Hilbert space with finite delay}, Mathematical Methods in the Applied Sciences, \textbf{37}(2013), 2177--2184.
  • Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S.M., {\em Approximate controllability of nonlinear fractional dynamical systems}, Commun. Nonlinear Sci. Numer. Simul, \textbf{18}(2013), 3498--3508.

Controllability of Neutral Impulsive Stochastic Integrodifferential Systems with Unbounded Delay

Year 2019, Volume: 11 Issue: 2, 112 - 121, 31.12.2019

Abstract

This manuscript investigates the controllability of neutral impulsive  stochastic integrodifferential systems with infinite delay in separable Hilbert space. The controllability results is obtained by using fixed-point technique and via resolvent operator.

References

  • Akgul, A., {\em A novel method for a fractional derivative with non-local and non-singular kernel}, Chaos, Solitons and Fractals, \textbf{114}(2018), 478--482.
  • Akgul, A., {\em On the solution of higher order difference equations, Mathematical Methods in the Applied Sciences}, \textbf{40(17)}(2016), 6165-6171.
  • Anguraj, A., Ramkumar, K., {\em Approximate controllability of semilinear stochastic integrodifferential system with nonlocal conditions}, fractal Fract, \textbf{2(4)}(2018), 29.
  • Arthi, G., Park, Ju H., Jung, H.Y., {\em Existence and exponential stability for neutral stochastic integrodifferential equations with impulses driven by a fractional Brownian motion}, Communication in Nonlinear Science and Numerical Simulation, \textbf{32}(2016), 145--157.
  • Balachandran, K., Kim, J.H., Karthikeyan, S., {\em Controllability of semilinear stochastic integrodifferential equations}, Kybernetika, \textbf{43}(2007), 31--44.
  • Balachandran, K., Karthikeyan, S., {\em Controllability of stochastic integrodifferential systems}, Int. J. Control, \textbf{80}(2007), 486--491.
  • Balachandran, K., Leelamani, A., Kim, J.H., {\em Controllability of neutral functional evolution integrodifferential systems with infinite delay}, IMA J. Math. Control Inform, \textbf{25}(2008), 157--171.
  • Boufoussi, B., Hajji, S., {\em Neutral stochastic functional differential equation driven by a fractional Brownian motion in a Hilbert space}, Statist. Probab. Lett, \textbf{82}(2012), 1549--1558.
  • Chen, M., {\em Approximate controllability of stochastic equations in a Hilbert space with fractional Brownian motion}, Stoch. Dyn, \textbf{15}(2015), 1--16.
  • Diop, M.A., Sakthivel, R., Ndiaye, A.A., {\em Neutral stochastic integrodifferential equations driven by a fractional Brownian motion with impulsive effects and time varying delays}, Mediterr. J. Math, \textbf{13(5)}(2016), 2425--2442.
  • Grimmer, R.C., {\em Resolvent operators for integral equations in a Banach space}, Transactions of the American Mathematical Society, \textbf{273}(1982), 333--349.
  • Klamka, J., {\em Stochastic controllability of linear systems with delay in control}, Bull. Pol. Acad. Sci. Tech. Sci, \textbf{55}(2007), 23--29.
  • Klamka, J., {\em Controllability of dynamical systems}, A survey. Bull. Pol. Acad. Sci. Tech. Sci, \textbf{61}(2013), 221--229.
  • Lakhel, E., {\em Controllability of neutral stochastic functional integrodifferential equations driven by fractional Brownian motion}, Stoch. Anal. Appl, \textbf{34(3)}(2016), 427--440.
  • Lakhel, E., Hajji, S., {\em Existence and uniqueness of mild solutions to neutral stochastic functonal differential equations driven by a fractional Brownian motion with non-Lipschitz coefficients}, J. Numerical Mathematics and Stochastics, \textbf{7(1)}(2015), 14--29.
  • Park, J.Y., Balachandran, K., Arthi, G., {\em Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces}, Nonlinear Analysis: Hybrid Systems, \textbf{3}(2009), 184--194.
  • Ren, Y., Cheng, X., Sakthivel, R., {\em On time dependent stochastic evolution equations driven by fractional Brownian motion in Hilbert space with finite delay}, Mathematical Methods in the Applied Sciences, \textbf{37}(2013), 2177--2184.
  • Sakthivel, R., Ganesh, R., Ren, Y., Anthoni, S.M., {\em Approximate controllability of nonlinear fractional dynamical systems}, Commun. Nonlinear Sci. Numer. Simul, \textbf{18}(2013), 3498--3508.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

A. Anguraj

K. Ravikumar This is me

Elsayed Elsayed 0000-0003-0894-8472

K. Ramkumar This is me

Publication Date December 31, 2019
Published in Issue Year 2019 Volume: 11 Issue: 2

Cite

APA Anguraj, A., Ravikumar, K., Elsayed, E., Ramkumar, K. (2019). Controllability of Neutral Impulsive Stochastic Integrodifferential Systems with Unbounded Delay. Turkish Journal of Mathematics and Computer Science, 11(2), 112-121.
AMA Anguraj A, Ravikumar K, Elsayed E, Ramkumar K. Controllability of Neutral Impulsive Stochastic Integrodifferential Systems with Unbounded Delay. TJMCS. December 2019;11(2):112-121.
Chicago Anguraj, A., K. Ravikumar, Elsayed Elsayed, and K. Ramkumar. “Controllability of Neutral Impulsive Stochastic Integrodifferential Systems With Unbounded Delay”. Turkish Journal of Mathematics and Computer Science 11, no. 2 (December 2019): 112-21.
EndNote Anguraj A, Ravikumar K, Elsayed E, Ramkumar K (December 1, 2019) Controllability of Neutral Impulsive Stochastic Integrodifferential Systems with Unbounded Delay. Turkish Journal of Mathematics and Computer Science 11 2 112–121.
IEEE A. Anguraj, K. Ravikumar, E. Elsayed, and K. Ramkumar, “Controllability of Neutral Impulsive Stochastic Integrodifferential Systems with Unbounded Delay”, TJMCS, vol. 11, no. 2, pp. 112–121, 2019.
ISNAD Anguraj, A. et al. “Controllability of Neutral Impulsive Stochastic Integrodifferential Systems With Unbounded Delay”. Turkish Journal of Mathematics and Computer Science 11/2 (December 2019), 112-121.
JAMA Anguraj A, Ravikumar K, Elsayed E, Ramkumar K. Controllability of Neutral Impulsive Stochastic Integrodifferential Systems with Unbounded Delay. TJMCS. 2019;11:112–121.
MLA Anguraj, A. et al. “Controllability of Neutral Impulsive Stochastic Integrodifferential Systems With Unbounded Delay”. Turkish Journal of Mathematics and Computer Science, vol. 11, no. 2, 2019, pp. 112-21.
Vancouver Anguraj A, Ravikumar K, Elsayed E, Ramkumar K. Controllability of Neutral Impulsive Stochastic Integrodifferential Systems with Unbounded Delay. TJMCS. 2019;11(2):112-21.