Research Article
BibTex RIS Cite
Year 2023, Volume: 15 Issue: 1, 110 - 117, 30.06.2023
https://doi.org/10.47000/tjmcs.1214202

Abstract

References

  • Anderson, F.W., Fuller, K.R., Rings and Categories of Modules, New York: Springer-Verlag, 1974.
  • Anderson Jr., W.N., Shorted operators, SIAM Journal on Applied Mathematics, 20(3)(1971), 522–525.
  • Anderson, W.N., Trapp, G.E., Shorted operators II, SIAM Journal on Applied Mathematics, 28(1)(1975), 60—71.
  • Djordjevic, D.S., Rakic, D.S., Marovt, J., Minus partial order in Rickart rings, Publ. Math. Debrecen, 87(3-4)(2015), 291–305.
  • Hartwig, R.E., How to partially order regular elements, Math. Japonica,25(1980), 1–13.
  • Jain, S.K., Blackwood, B., Prasad, K.M., Srivastava, A. K., Shorted operators relative to a partial order in a regular ring, Comm. Algebra, 37(11)(2009), 4141–4152.
  • Jain, S.K., Prasad, K.M., Right-left symmetry of aR  bR = (a + b)R in regular rings, J. Pure Appl. Algebra,133(1-2)(1998), 141-–142.
  • Kasch, F., Mader, A., Regularity and Substructures of Hom, Frontiers in Mathematics Basel, Switzerland: Birkh¨auser, 2009.
  • Lee, G., Rizvi, S.T., Roman, C.S., Rickart modules, Comm. Algebra, 38(11)(2010), 4005–4027.
  • Marovt, J., On partial orders in Rickart rings, Linear and Multilinear Algebra, 63(9)(2015), 1707–1723.
  • Mitra, S.K., The minus partial order and shorted matrix, Linear Algebra Appl., 83(1986), 1–27.
  • Mitsch, H., A natural partial order for semigroups, Proc. Am. Math. Soc., 97(3)(1986), 384—388.
  • Nambooripad, K. S. S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc., 23(3)(1980), 249–260.
  • Quynh, T.C., Abyzov, A., Koşan, M.T., On (unit-)regular morphisms, Lobachevskii Journal of Mathematics, 40(12)(2019), 2103–2110.
  • Quynh, T.C., Koşan, M.T., Hai, P.T., A note on regular morphisms, Ann. Univ. Sci. Budapest. Sect. Comput., 41(2013), 249–260.
  • Quynh, T.C., Koşan, M.T., Thuyet, L.V., On (semi)regular morphisms, Comm. Algebra, 41(8)(2013).
  • Semrl, P., Automorphisms of B(H) with respect to minus partial order, J. Math. Anal. Appl., 369(1)(2010), 205–213.
  • Ungor, B., Halicioglu, S., Harmanci, A., Marovt, J., Minus partial order in regular modules, Comm. Algebra, 48(10)(2020), 4542–4553.
  • Ungor, B., Halicioglu, S., Harmanci, A., Marovt, J., On properties of the minus partial order in regular modules, Publ. Math. Debrecen, 96(1-2)(2020), 149–159.
  • von Neumann, J., On Regular ring, Proc. Nat. Acad. Sci., 22(12)(1936), 707–713.

The Minus Partial Order on Endomorphism Rings

Year 2023, Volume: 15 Issue: 1, 110 - 117, 30.06.2023
https://doi.org/10.47000/tjmcs.1214202

Abstract

Let $S=End(M)$ be the ring of endomorphisms of a right $R$-module M. In this paper we define the minus parital order for the endomorphism ring of modules. Also, we extend study of minus partial order to the endomorphism ring of a (Rickart) module. Thus several well-known results concerning minus partial order are generalized.

References

  • Anderson, F.W., Fuller, K.R., Rings and Categories of Modules, New York: Springer-Verlag, 1974.
  • Anderson Jr., W.N., Shorted operators, SIAM Journal on Applied Mathematics, 20(3)(1971), 522–525.
  • Anderson, W.N., Trapp, G.E., Shorted operators II, SIAM Journal on Applied Mathematics, 28(1)(1975), 60—71.
  • Djordjevic, D.S., Rakic, D.S., Marovt, J., Minus partial order in Rickart rings, Publ. Math. Debrecen, 87(3-4)(2015), 291–305.
  • Hartwig, R.E., How to partially order regular elements, Math. Japonica,25(1980), 1–13.
  • Jain, S.K., Blackwood, B., Prasad, K.M., Srivastava, A. K., Shorted operators relative to a partial order in a regular ring, Comm. Algebra, 37(11)(2009), 4141–4152.
  • Jain, S.K., Prasad, K.M., Right-left symmetry of aR  bR = (a + b)R in regular rings, J. Pure Appl. Algebra,133(1-2)(1998), 141-–142.
  • Kasch, F., Mader, A., Regularity and Substructures of Hom, Frontiers in Mathematics Basel, Switzerland: Birkh¨auser, 2009.
  • Lee, G., Rizvi, S.T., Roman, C.S., Rickart modules, Comm. Algebra, 38(11)(2010), 4005–4027.
  • Marovt, J., On partial orders in Rickart rings, Linear and Multilinear Algebra, 63(9)(2015), 1707–1723.
  • Mitra, S.K., The minus partial order and shorted matrix, Linear Algebra Appl., 83(1986), 1–27.
  • Mitsch, H., A natural partial order for semigroups, Proc. Am. Math. Soc., 97(3)(1986), 384—388.
  • Nambooripad, K. S. S., The natural partial order on a regular semigroup, Proc. Edinburgh Math. Soc., 23(3)(1980), 249–260.
  • Quynh, T.C., Abyzov, A., Koşan, M.T., On (unit-)regular morphisms, Lobachevskii Journal of Mathematics, 40(12)(2019), 2103–2110.
  • Quynh, T.C., Koşan, M.T., Hai, P.T., A note on regular morphisms, Ann. Univ. Sci. Budapest. Sect. Comput., 41(2013), 249–260.
  • Quynh, T.C., Koşan, M.T., Thuyet, L.V., On (semi)regular morphisms, Comm. Algebra, 41(8)(2013).
  • Semrl, P., Automorphisms of B(H) with respect to minus partial order, J. Math. Anal. Appl., 369(1)(2010), 205–213.
  • Ungor, B., Halicioglu, S., Harmanci, A., Marovt, J., Minus partial order in regular modules, Comm. Algebra, 48(10)(2020), 4542–4553.
  • Ungor, B., Halicioglu, S., Harmanci, A., Marovt, J., On properties of the minus partial order in regular modules, Publ. Math. Debrecen, 96(1-2)(2020), 149–159.
  • von Neumann, J., On Regular ring, Proc. Nat. Acad. Sci., 22(12)(1936), 707–713.
There are 20 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Tufan Özdin 0000-0001-8081-1871

Publication Date June 30, 2023
Published in Issue Year 2023 Volume: 15 Issue: 1

Cite

APA Özdin, T. (2023). The Minus Partial Order on Endomorphism Rings. Turkish Journal of Mathematics and Computer Science, 15(1), 110-117. https://doi.org/10.47000/tjmcs.1214202
AMA Özdin T. The Minus Partial Order on Endomorphism Rings. TJMCS. June 2023;15(1):110-117. doi:10.47000/tjmcs.1214202
Chicago Özdin, Tufan. “The Minus Partial Order on Endomorphism Rings”. Turkish Journal of Mathematics and Computer Science 15, no. 1 (June 2023): 110-17. https://doi.org/10.47000/tjmcs.1214202.
EndNote Özdin T (June 1, 2023) The Minus Partial Order on Endomorphism Rings. Turkish Journal of Mathematics and Computer Science 15 1 110–117.
IEEE T. Özdin, “The Minus Partial Order on Endomorphism Rings”, TJMCS, vol. 15, no. 1, pp. 110–117, 2023, doi: 10.47000/tjmcs.1214202.
ISNAD Özdin, Tufan. “The Minus Partial Order on Endomorphism Rings”. Turkish Journal of Mathematics and Computer Science 15/1 (June 2023), 110-117. https://doi.org/10.47000/tjmcs.1214202.
JAMA Özdin T. The Minus Partial Order on Endomorphism Rings. TJMCS. 2023;15:110–117.
MLA Özdin, Tufan. “The Minus Partial Order on Endomorphism Rings”. Turkish Journal of Mathematics and Computer Science, vol. 15, no. 1, 2023, pp. 110-7, doi:10.47000/tjmcs.1214202.
Vancouver Özdin T. The Minus Partial Order on Endomorphism Rings. TJMCS. 2023;15(1):110-7.