FPGA Implementation of a Chaotic Quadratic Map for Cryptographic Applications
Year 2017,
Volume: 12 Issue: 2, 113 - 119, 01.10.2017
Hidayet Oğraş
,
Mustafa Türk
Abstract
A hardware implementation of a quadratic map through FPGA platform is proposed in this paper. Firstly, a
chaotic quadratic map is modeled by using Matlab/Simulink programming and then implemented into the FPGA
(Field Programmable Gate Array) to be used for key generation for cryptographic applications. When the
quadratic map is in chaotic mode, its output is unpredictable and aperiodic. Besides this, the map has a uniform
output distribution and sufficient randomness. These characteristics make the chaotic quadratic map a suitable
key generator for cryptography. This paper also reveals the successful real-time implementation of the quadratic
map using FPGA for practical applications. Experimental results confirm that the feasibility of the quadratic map
is verified under a digital hardware environment.
References
- 1. Kang, Z., Sun, J., Ma, L., Qi, Y. and Jian, S.,
(2014). Multimode synchronization of chaotic
semiconductor ring laser and its potential in chaos
communication. IEEE journal of Quantum
Electronics, vol. 50, pp. 148-157.
- 2. Yang, J., Chen, Y. and Zhu, F., (2015) .Associated
observer-based synchronization for uncertain chaotic
systems subject to channel noise and chaos-based
secure communication. Neurocomputing, vol. 167,
pp. 587-595.
- 3. Eisencraft, M., at al., (2012). Chaos-based
communication systems in non-ideal channels.
Communications in Nonlinear Science and Numerical
Simulation, vol. 17, pp. 4707-4718.
- 4. Kaddoum, G., Coulon, M., Roviras, D. and Charge,
P., (2010). Theoritical performance for asynchronous
multi-user chaos-based communication systems on
fading channels. Signal Processing, vol. 90, pp. 2923-
2933.
- 5. Zaher, A. A. and Abu-Rezq, A., (2011). On the
design of chaos-based secure communication
systems, Communications in Nonlinear Science and
Numerical Simulation, vol. 16, pp. 3721-3737.
- 6. Turk, M. and Ogras, H., (2011). Classification of
chaos-based digital modulation techniques using
wavelet neural networks and performance comparison
of wavelet families. Expert Systems with
Applications, vol. 38, pp. 2557-2565.
- 7. Zhu, Z. L., Zhang, W., Wong, K. W., Yu, H.,
(2011). A Chaos-based symmetric image encryption
scheme using a bit-level permutation. Information
Sciences, vol. 181, pp. 1171-1186.
- 8. Patidar, V., Pareek, N. K., Purohit, G. and Sud, K.
K., (2011). A Robust and secure chaotic standard map
based pseudorandom permutation-substitution scheme
for image encryption. Optics Communications, vol.
284, pp. 4331-4339.
- 9. Murillo-Escobar, M. A. et al., (2015). A RGB
image encryption algorithm based on total plain
image characteristics and chaos. Signal Processing,
vol. 109, pp. 119-131.
- 10. Ye, R., and Guo, W., (2014). An image
encryption scheme Multimode synchronization of
chaotic semicon based on chaotic systems with
changeable parameters,” I. J. Computer Network and
Information Security, vol. 4, pp. 37-45.
- 11. Zhu, H., Zhao, C. and Zhang, X., (2013). A Novel
image encryption-compression scheme using hyperchaos and Chinese remainder theorem. Signal
Processing: Image Communication, vol. 28, pp. 670-
680.
- 12. Ogras, H. and Turk, M., (2017). A Robust chaosbased image cryptosystem with an improved key
generator and plain image sensitivity mechanism.
Journal of Information Security, vol. 8, pp. 23-41.
- 13. Yibei, W., Man, L., Yanting, X. and Hougui, C.,
(2011). Research on chaos phenomena in power
systems. Power engineering and automation
conference, vol. 2, pp. 453-456.
- 14. Yau, H. T., Wang, M. H., Wang, T. Y. and Chen,
G., (2015). Signal clustering of power disturbance by
using chaos synchronization. Int. J. Electr. Power
Energy System, vol. 64, pp. 112-120.
- 15. Ghasemi, M., Ghavidel, S., Aghaei, J., Gitizadeh,
M. and Falah, H., (2014). Application of chaos-based
chaotic invasive weed optimization techniques for
environmental OPF problems in the power systems.
Chaos, Solitons Fract., vol. 69, pp. 271-284.
- 16. Chen, Q., Ren, X. and Na, J., (2015). Robust
finite-time chaos synchronization of uncertain
permament magnet synchronous motors. ISA Trans.,
vol. 58, pp. 262-269.
- 17. Merah, L., Ali-Pacha, A., Said, N. H. and Mamat,
M., (2013). Design and FPGA implementation of
Lorenz chaotic system for information security issues.
Applied Mathematical Sciences, vol. 7, pp. 237-246.
- 18. Xue, H., Wang S. and Meng, X., (2013). Study on
one modified chaotic system based on Logistic map.
Res. J. Appl. Sci. Eng. Technol., vol. 5, pp. 898-904.
- 19. Aseeri, M. A. and Sobhy,M. I., (2002). A New
approach to implement Chaotic generators based on
Field Programmable Gate Array (FPGA). Proc. 3rd.
Int. Conf. Discrete Chaotic Dynam. Nature Soc.,
September.
- 20. Mao, Y., Cao, L. and Liu, W., (2006). Design and
FPGA implementation of a pseudo-random bit
sequence generator using spatiotemporal chaos. IEEE
Proceedings of International Conference on
Communications, Circuits and Systems, pp. 2114-
2118.
- 21. Lian, S., Sun, J. and Wang, Z., (2005). Security
analysis of a chaos-based image encryption algorithm.
Physica A: Statistical Mechanics and its Applications,
vol. 351, pp. 645-661.
- 22. Ramadan, N., Ahmed, H. E., Elkhamy H S. E.,
and Abd El-Samie, F. E., (2016). Chaos-based image
encryption using an improved quadratic chaotic map.
American Journal of Signal Processing, vol. 6, pp. 1-
13.
- 23. Hathal, H. M., Abdulhussein, R. A. and Ibrahim,
S. K., (2014). Lyapunov exponent testing for AWGN
generator system. Communications and Network, vol.
6, pp. 201-208.
- 24. Marton, K., Suciu, A., Sacarea, C. and Cret, O.,
(2012). Generation and testing of random numbers for
cryptographic applications. Proceedings of the
Romanian Academy, vol. 13, pp. 368-377.
- 25. Rukhin, A., Soto, J., Nechvatal, J. and Smid, M.,
(2010). A Statistical Test for random and
psudorandom number generators for cryptographic
applications. NIST Special Publication 800-22 rev1,
pp. 2-40.
- 26. Chen, J. X., Zhu, Z. L., Fu, C., Yu, H. and Zhang,
L.B (2015). A Fast chaos-based image encryption
scheme with a dynamic state variables selection
mechanism. Communications in Nonlinear Science
and Numerical Simulation, vol. 20, pp. 846-860.
Year 2017,
Volume: 12 Issue: 2, 113 - 119, 01.10.2017
Hidayet Oğraş
,
Mustafa Türk
References
- 1. Kang, Z., Sun, J., Ma, L., Qi, Y. and Jian, S.,
(2014). Multimode synchronization of chaotic
semiconductor ring laser and its potential in chaos
communication. IEEE journal of Quantum
Electronics, vol. 50, pp. 148-157.
- 2. Yang, J., Chen, Y. and Zhu, F., (2015) .Associated
observer-based synchronization for uncertain chaotic
systems subject to channel noise and chaos-based
secure communication. Neurocomputing, vol. 167,
pp. 587-595.
- 3. Eisencraft, M., at al., (2012). Chaos-based
communication systems in non-ideal channels.
Communications in Nonlinear Science and Numerical
Simulation, vol. 17, pp. 4707-4718.
- 4. Kaddoum, G., Coulon, M., Roviras, D. and Charge,
P., (2010). Theoritical performance for asynchronous
multi-user chaos-based communication systems on
fading channels. Signal Processing, vol. 90, pp. 2923-
2933.
- 5. Zaher, A. A. and Abu-Rezq, A., (2011). On the
design of chaos-based secure communication
systems, Communications in Nonlinear Science and
Numerical Simulation, vol. 16, pp. 3721-3737.
- 6. Turk, M. and Ogras, H., (2011). Classification of
chaos-based digital modulation techniques using
wavelet neural networks and performance comparison
of wavelet families. Expert Systems with
Applications, vol. 38, pp. 2557-2565.
- 7. Zhu, Z. L., Zhang, W., Wong, K. W., Yu, H.,
(2011). A Chaos-based symmetric image encryption
scheme using a bit-level permutation. Information
Sciences, vol. 181, pp. 1171-1186.
- 8. Patidar, V., Pareek, N. K., Purohit, G. and Sud, K.
K., (2011). A Robust and secure chaotic standard map
based pseudorandom permutation-substitution scheme
for image encryption. Optics Communications, vol.
284, pp. 4331-4339.
- 9. Murillo-Escobar, M. A. et al., (2015). A RGB
image encryption algorithm based on total plain
image characteristics and chaos. Signal Processing,
vol. 109, pp. 119-131.
- 10. Ye, R., and Guo, W., (2014). An image
encryption scheme Multimode synchronization of
chaotic semicon based on chaotic systems with
changeable parameters,” I. J. Computer Network and
Information Security, vol. 4, pp. 37-45.
- 11. Zhu, H., Zhao, C. and Zhang, X., (2013). A Novel
image encryption-compression scheme using hyperchaos and Chinese remainder theorem. Signal
Processing: Image Communication, vol. 28, pp. 670-
680.
- 12. Ogras, H. and Turk, M., (2017). A Robust chaosbased image cryptosystem with an improved key
generator and plain image sensitivity mechanism.
Journal of Information Security, vol. 8, pp. 23-41.
- 13. Yibei, W., Man, L., Yanting, X. and Hougui, C.,
(2011). Research on chaos phenomena in power
systems. Power engineering and automation
conference, vol. 2, pp. 453-456.
- 14. Yau, H. T., Wang, M. H., Wang, T. Y. and Chen,
G., (2015). Signal clustering of power disturbance by
using chaos synchronization. Int. J. Electr. Power
Energy System, vol. 64, pp. 112-120.
- 15. Ghasemi, M., Ghavidel, S., Aghaei, J., Gitizadeh,
M. and Falah, H., (2014). Application of chaos-based
chaotic invasive weed optimization techniques for
environmental OPF problems in the power systems.
Chaos, Solitons Fract., vol. 69, pp. 271-284.
- 16. Chen, Q., Ren, X. and Na, J., (2015). Robust
finite-time chaos synchronization of uncertain
permament magnet synchronous motors. ISA Trans.,
vol. 58, pp. 262-269.
- 17. Merah, L., Ali-Pacha, A., Said, N. H. and Mamat,
M., (2013). Design and FPGA implementation of
Lorenz chaotic system for information security issues.
Applied Mathematical Sciences, vol. 7, pp. 237-246.
- 18. Xue, H., Wang S. and Meng, X., (2013). Study on
one modified chaotic system based on Logistic map.
Res. J. Appl. Sci. Eng. Technol., vol. 5, pp. 898-904.
- 19. Aseeri, M. A. and Sobhy,M. I., (2002). A New
approach to implement Chaotic generators based on
Field Programmable Gate Array (FPGA). Proc. 3rd.
Int. Conf. Discrete Chaotic Dynam. Nature Soc.,
September.
- 20. Mao, Y., Cao, L. and Liu, W., (2006). Design and
FPGA implementation of a pseudo-random bit
sequence generator using spatiotemporal chaos. IEEE
Proceedings of International Conference on
Communications, Circuits and Systems, pp. 2114-
2118.
- 21. Lian, S., Sun, J. and Wang, Z., (2005). Security
analysis of a chaos-based image encryption algorithm.
Physica A: Statistical Mechanics and its Applications,
vol. 351, pp. 645-661.
- 22. Ramadan, N., Ahmed, H. E., Elkhamy H S. E.,
and Abd El-Samie, F. E., (2016). Chaos-based image
encryption using an improved quadratic chaotic map.
American Journal of Signal Processing, vol. 6, pp. 1-
13.
- 23. Hathal, H. M., Abdulhussein, R. A. and Ibrahim,
S. K., (2014). Lyapunov exponent testing for AWGN
generator system. Communications and Network, vol.
6, pp. 201-208.
- 24. Marton, K., Suciu, A., Sacarea, C. and Cret, O.,
(2012). Generation and testing of random numbers for
cryptographic applications. Proceedings of the
Romanian Academy, vol. 13, pp. 368-377.
- 25. Rukhin, A., Soto, J., Nechvatal, J. and Smid, M.,
(2010). A Statistical Test for random and
psudorandom number generators for cryptographic
applications. NIST Special Publication 800-22 rev1,
pp. 2-40.
- 26. Chen, J. X., Zhu, Z. L., Fu, C., Yu, H. and Zhang,
L.B (2015). A Fast chaos-based image encryption
scheme with a dynamic state variables selection
mechanism. Communications in Nonlinear Science
and Numerical Simulation, vol. 20, pp. 846-860.