Öğretmen Adaylarının STEM (FTMM) Konularının Öğretimine Yönelik İnanç ve Görüşlerinin İncelenmesi
Year 2019,
Volume: 9 Issue: 4, 649 - 665, 20.12.2019
Nilay Öztürk
,
Özgül Yılmaz Tüzün
,
Birgül Çakır Yıldırım
Abstract
Bu çalışmanın amacı STEM etkinliklerini merkeze
alan bir laboratuvar dersi kapsamında öğretmen adaylarının STEM konularının
öğretimine yönelik inanç ve görüşlerinin incelenmesidir. Vaka incelemesi
araştırma deseni kullanılan bu çalışmada, belirtilen dersi alan 18 öğretmen
adayına STEM’in doğası ve fen öğretiminde kullanımı ile ilgili öğretim yapılmış
ve sonrasında öğretmen adayları gruplar halinde STEM etkinlikleri geliştirip bu
etkinlikleri sınıf ortamında uygulamışlardır. Çalışmada kullanılan veri toplama
araçları şunlardır: STEM Öğretimi Öz-Yeterlik Ölçeği, Tanımlayıcı Bilgiler
Anketi ve Görüşme Protokolü. Çalışmanın sonuçları göstermiştir ki, dersi alan
öğretmen adaylarının STEM öğretimi öz-yeterlik inançları kuvvetlenmiştir. STEM
öğretimine yönelik görüşlerin ortaya çıkarılmasını amaçlayan odak grup
görüşmelerine göre ortaya çıkan kategoriler ise; (a) STEM algısı, (b) STEM’i
gelecek derslerde kullanma, (c) materyal kullanımı, (d) geliştirilen bilgi ve
beceriler ve (e) anlamlı öğrenme olmuştur. Çalışmanın sonuçları ilgili
çalışmalarla karşılaştırılıp tartışılmış ve öneriler sunulmuştur.
References
- Bandura, A. (1981). Self-referent thought: A developmental analysis of self-efficacy. In J. H. Flavell, & L. Ross (Eds.), Social cognitive development: Frontiers and possible futures (pp. 200–239). Cambridge, MA: Cambridge University Press.
- Baran, E., Canbazoglu Bilici, S., Mesutoglu, C. & Ocak, C. (2016). Moving STEM beyond schools: Students’ perceptions about an out-of-school STEM education program. International Journal of Education in Mathematics, Science and Technology, 4(1), 9-19. doi:10.18404/ijemst.71338
- Bers, M. U., Seddighin, S., & Sullivan, A. (2013). Ready for robotics: Bringing together the T and E of STEM in early childhood teacher education. Journal of Technology and Teacher Education, 21(3), 355–377.
- Bozkurt-Altan, E., Yamak, H., & Buluş-Kırıkkaya, E. (2016). FeTeMM eğitim yaklaşımının öğretmen eğitiminde uygulanmasına yönelik bir öneri: Tasarım temelli fen eğitimi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 6(2), 212-232.
- Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.
- Çavaş, B., Bulut, Ç., Holbrook, J., & Rannikmae, M. (2013). Fen eğitimine mühendislik odaklı bir yaklaşım: ENGINEER projesi ve uygulamaları [An engineering-focused approach to science education: ENGINEER projects and applications]. Fen Bilimleri Öğretimi Dergisi, 1(1), 12–22.
- Enochs, L. G., & Riggs, I. M. (1990). Further development of an elementary science teaching efficacy belief instrument: A preservice elementary instrument. School Science and Mathematics, 90(8), 694–705.
- Green, M. (2007). Science and Engineering Degrees: 1966 – 2004 (NSF 07-307). Arlington, VA: National Science Foundation.
- Harlen, W. (1997). Primary teachers’ understanding in science and its impact in the classroom. Research in Science Education, 27(3), 323–337.
- Hodson, D. 2003. Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645-670.
- Kuenzi, J., Matthews, C., & Mangan, B. (2006). Science, technology, engineering, and mathematics (STEM) Education issues and legislative options. Congressional Research Report. Washington, DC: Congressional Research Service.
- Linn, M. C. (1998). The impact of technology on science instruction: historical trends and current opportunities. In B. J. Fraser & K. G. Tobin (Eds.) International handbook of research in science (pp. 265- 294). Dortrecht, The Netherlands, Kluwer Academic Publishers
- Means, B., Wang, H., Young, V., Peters, V. L., & Lynch, S. J. (2016). STEM-focused high schools as a strategy for enhancing readiness for postsecondary STEM programs. Journal of Research in Science Teaching, 53(5), 709-736.
- Milli Eğitim Bakanlığı (MEB). (2013). Okul öncesi eğitim programı. https://tegm.meb.gov.tr/dosya/okuloncesi/ooproram.pdf
- Milli Eğitim Bakanlığı (MEB). (2016). STEM education report. http://yegitek.meb.gov.tr/STEM_Education_Report.pdf
- Milli Eğitim Bakanlığı (MEB). (2017). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar) http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=143
- National Academy of Sciences ‘Rising Above the Gathering Storm’ Committee. (2010). Rising above the gathering storm, revisited: Rapidly approaching category 5. Washington, DC: National Academies Press
- National Research Council (NRC). (2010). Exploring the intersection of science education and 2lst century skills: A workshop summary. Washington, DC: National Academies Press.
- National Research Council (NRC). (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington, DC: National.
- National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
- National Science Foundation. (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology. Washington, D.C. :National Science Foundation.
- NGSS Lead States (2013). Next Generation Science Standards: For states, by states. Washington: The National Academies Press.
- Nugent, G., Barker, B., Welch, G., Grandgenett, N., Wu, C. R., & Nelson, C. (2015). A model of factors contributing to STEM learning and career orientation. International Journal of Science Education, 37(7), 1067-1088, doi:10.1080/09500693.2015.1017863
- Olgan, R. (2008). A longitudinal analysis of science teaching and learning in kindergarten and first-grade. (Unpublished doctoral dissertation), Florida State University, Tallahasee.
- Olgan, R. (2015). Influences on Turkish early childhood teachers’ science teaching practices and the science content covered in the early years. Early Child Development and Care, 185(6), 926-942.
- Organisation for Economic Co-operation and Development (OECD). (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. Paris: OECD.
- Özçelik, A., & Akgündüz, D. (2018). Üstün/Özel yetenekli öğrencilerle yapılan okul dışı STEM eğitiminin değerlendirilmesi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8(2), 334-351.
- PCAST (President’s Council of Advisors on Science and Technology). (2010). Prepare and inspire: K-12 education in STEM (science, technology, engineering and math) for America’s future. http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf
- Sungur Gül, K. & Marulcu, İ. (2014). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ile öğretmen adaylarının bakış açılarının incelenmesi. International Periodical for The Languages, Literature and History of Turkish or Turkic, 9(2), 761-786.
- Tekkaya, C., Cakiroglu, J. ve Özkan, Ö. (2004). Turkish pre-service science teachers’ understanding of science and their confidence in teaching it. Journal of Education for Teaching, 30(1), 57–66
- Yamak, H., Bulut, N., & Dündar, S. (2014). 5. sınıf öğrencilerinin bilimsel süreç becerileri ile fene karşı tutumlarına FeTeMM etkinliklerinin etkisi. Gazi Eğitim Fakültesi Dergisi, 34(2), 249-265.
- Zeidler, D. L. (2016). STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11-26.
Year 2019,
Volume: 9 Issue: 4, 649 - 665, 20.12.2019
Nilay Öztürk
,
Özgül Yılmaz Tüzün
,
Birgül Çakır Yıldırım
References
- Bandura, A. (1981). Self-referent thought: A developmental analysis of self-efficacy. In J. H. Flavell, & L. Ross (Eds.), Social cognitive development: Frontiers and possible futures (pp. 200–239). Cambridge, MA: Cambridge University Press.
- Baran, E., Canbazoglu Bilici, S., Mesutoglu, C. & Ocak, C. (2016). Moving STEM beyond schools: Students’ perceptions about an out-of-school STEM education program. International Journal of Education in Mathematics, Science and Technology, 4(1), 9-19. doi:10.18404/ijemst.71338
- Bers, M. U., Seddighin, S., & Sullivan, A. (2013). Ready for robotics: Bringing together the T and E of STEM in early childhood teacher education. Journal of Technology and Teacher Education, 21(3), 355–377.
- Bozkurt-Altan, E., Yamak, H., & Buluş-Kırıkkaya, E. (2016). FeTeMM eğitim yaklaşımının öğretmen eğitiminde uygulanmasına yönelik bir öneri: Tasarım temelli fen eğitimi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 6(2), 212-232.
- Bybee, R. W. (2010). Advancing STEM education: A 2020 vision. Technology and Engineering Teacher, 70(1), 30-35.
- Çavaş, B., Bulut, Ç., Holbrook, J., & Rannikmae, M. (2013). Fen eğitimine mühendislik odaklı bir yaklaşım: ENGINEER projesi ve uygulamaları [An engineering-focused approach to science education: ENGINEER projects and applications]. Fen Bilimleri Öğretimi Dergisi, 1(1), 12–22.
- Enochs, L. G., & Riggs, I. M. (1990). Further development of an elementary science teaching efficacy belief instrument: A preservice elementary instrument. School Science and Mathematics, 90(8), 694–705.
- Green, M. (2007). Science and Engineering Degrees: 1966 – 2004 (NSF 07-307). Arlington, VA: National Science Foundation.
- Harlen, W. (1997). Primary teachers’ understanding in science and its impact in the classroom. Research in Science Education, 27(3), 323–337.
- Hodson, D. 2003. Time for action: Science education for an alternative future. International Journal of Science Education, 25(6), 645-670.
- Kuenzi, J., Matthews, C., & Mangan, B. (2006). Science, technology, engineering, and mathematics (STEM) Education issues and legislative options. Congressional Research Report. Washington, DC: Congressional Research Service.
- Linn, M. C. (1998). The impact of technology on science instruction: historical trends and current opportunities. In B. J. Fraser & K. G. Tobin (Eds.) International handbook of research in science (pp. 265- 294). Dortrecht, The Netherlands, Kluwer Academic Publishers
- Means, B., Wang, H., Young, V., Peters, V. L., & Lynch, S. J. (2016). STEM-focused high schools as a strategy for enhancing readiness for postsecondary STEM programs. Journal of Research in Science Teaching, 53(5), 709-736.
- Milli Eğitim Bakanlığı (MEB). (2013). Okul öncesi eğitim programı. https://tegm.meb.gov.tr/dosya/okuloncesi/ooproram.pdf
- Milli Eğitim Bakanlığı (MEB). (2016). STEM education report. http://yegitek.meb.gov.tr/STEM_Education_Report.pdf
- Milli Eğitim Bakanlığı (MEB). (2017). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. sınıflar) http://mufredat.meb.gov.tr/ProgramDetay.aspx?PID=143
- National Academy of Sciences ‘Rising Above the Gathering Storm’ Committee. (2010). Rising above the gathering storm, revisited: Rapidly approaching category 5. Washington, DC: National Academies Press
- National Research Council (NRC). (2010). Exploring the intersection of science education and 2lst century skills: A workshop summary. Washington, DC: National Academies Press.
- National Research Council (NRC). (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. Washington, DC: National.
- National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.
- National Science Foundation. (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology. Washington, D.C. :National Science Foundation.
- NGSS Lead States (2013). Next Generation Science Standards: For states, by states. Washington: The National Academies Press.
- Nugent, G., Barker, B., Welch, G., Grandgenett, N., Wu, C. R., & Nelson, C. (2015). A model of factors contributing to STEM learning and career orientation. International Journal of Science Education, 37(7), 1067-1088, doi:10.1080/09500693.2015.1017863
- Olgan, R. (2008). A longitudinal analysis of science teaching and learning in kindergarten and first-grade. (Unpublished doctoral dissertation), Florida State University, Tallahasee.
- Olgan, R. (2015). Influences on Turkish early childhood teachers’ science teaching practices and the science content covered in the early years. Early Child Development and Care, 185(6), 926-942.
- Organisation for Economic Co-operation and Development (OECD). (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. Paris: OECD.
- Özçelik, A., & Akgündüz, D. (2018). Üstün/Özel yetenekli öğrencilerle yapılan okul dışı STEM eğitiminin değerlendirilmesi. Trakya Üniversitesi Eğitim Fakültesi Dergisi, 8(2), 334-351.
- PCAST (President’s Council of Advisors on Science and Technology). (2010). Prepare and inspire: K-12 education in STEM (science, technology, engineering and math) for America’s future. http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stemed-report.pdf
- Sungur Gül, K. & Marulcu, İ. (2014). Yöntem olarak mühendislik-dizayna ve ders materyali olarak legolara öğretmen ile öğretmen adaylarının bakış açılarının incelenmesi. International Periodical for The Languages, Literature and History of Turkish or Turkic, 9(2), 761-786.
- Tekkaya, C., Cakiroglu, J. ve Özkan, Ö. (2004). Turkish pre-service science teachers’ understanding of science and their confidence in teaching it. Journal of Education for Teaching, 30(1), 57–66
- Yamak, H., Bulut, N., & Dündar, S. (2014). 5. sınıf öğrencilerinin bilimsel süreç becerileri ile fene karşı tutumlarına FeTeMM etkinliklerinin etkisi. Gazi Eğitim Fakültesi Dergisi, 34(2), 249-265.
- Zeidler, D. L. (2016). STEM education: A deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies of Science Education, 11(1), 11-26.