Research Article
BibTex RIS Cite

Öğretmen adaylarının duran dalga kavramına yönelik kavramsal anlamaları

Year 2021, , 1 - 22, 31.01.2021
https://doi.org/10.19128/turje.744113

Abstract

Araştırmada öğretmen adaylarının duran dalga kavramına yönelik kavramsal anlamalarının belirlenmesi amaçlanmıştır. Öğretmen adaylarının duran dalgaya yönelik kavramsal anlamaları fenomenoloji deseni aracılığıyla belirlenmiş ve onların bu fenomene yükledikleri anlamın ve o kavramı nasıl algıladıklarının, deneyimlediklerinin ortaya konması hedeflenmiştir. Araştırma 13 öğretmen adayı ile yürütülmüştür. Araştırmada veri toplama aracı olarak öğretmen adaylarının demografik özelliklerinin belirlenmesi için bir kapalı uçlu sorudan ve duran dalgaya yönelik kavramsal anlamaların belirlenmesi için beş açık uçlu sorudan yararlanılmıştır. Veriler öğretmen adayları ile bireysel olarak gerçekleştirilen yarı yapılandırılmış görüşmelerle toplanmıştır. Araştırmada öğretmen adaylarından gelen yanıtlar farklılık gösterdiğinden, ‘Answer Sculptures’ modeli tercih edilerek yeni bir harita aracılığıyla betimlenerek analiz edilmiştir. Araştırma sonucunda öğretmen adaylarının duran dalga kavramına yönelik kavramsal anlamalarında sorunlar olduğu, eksik bilgiye ve bilimsel olmayan görüşlere de sahip oldukları belirlenmiştir. Duran dalga kavramını sadece birkaç öğretmen adayının tam olarak anlamlandırdığı ortaya çıkmıştır.

References

  • Balta, N. (2018). High school teachers’ understanding of blackbody radiation. International Journal of Science and Mathematics Education, 16(1), 23-43. DOI: 10.1007/s10763-016-9769-z
  • Barniol, P., & Zavala, G. (2017). The mechanical waves conceptual survey: An analysis of university students’ performance, and recommendations for instruction. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 929-952. DOI: 10.12973/eurasia.2017.00651a
  • Bhathal, R., Sharma, M. D., & Mendez, A. (2010). Educational analysis of a first year engineering physics experiment on standing waves: Based on the ACELL approach. European Journal of Physics, 31(1), 23-35. DOI: 10.1088/0143-0807/31/1/003
  • Bozzo, G., de Sabata, F., Pistori, S., & Monti, F. (2019). Imaging and studying standing waves with a homemade melde-type apparatus and ınformation and communication technology (ICT). The Physics Teacher, 57(9), 612-615. DOI: 10.1119/1.5135790
  • Brew, A. (2001). Conceptions of research: A phenomenographic study. Studies in Higher Education, 26(3), 271-285. DOI: 10.1080/03075070120076255
  • Brody, J., Villhauer, E., & Espiritu, H. (2014). Standing waves between a microwave transmitter and receiver. American Journal of Physics, 82(12), 1157-1160. DOI: 10.1119/1.4896355
  • Caleon, I. S., & Subramaniam, R. (2010). Do students know what they know and what they don’t know? Using a four-tier diagnostic test to assess the nature of students’ alternative conceptions. Research in Science Education, 40(3), 313-337. DOI: 10.1007/s11165-009-9122-4
  • Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory (3rd edition). Sage Publications. DOI: 10.4135/9781452230153
  • Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th edition). Sage Publications. Retrieved from, http://fe.unj.ac.id/wp-content/uploads/2019/08/Research-Design_Qualitative-Quantitative-and-Mixed-Methods-Approaches.pdf
  • Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th edition). Sage Publications.
  • Creswell, J. W., & Poth, C. N. (2015). Qualitative inquiry & Research design: Choosing among five approaches (4th edition). Sage Publications. DOI: 10.13187/rjs.2017.1.30
  • Crockett, A., & Rueckner, W. (2018). Visualizing sound waves with schlieren optics. American Journal of Physics, 86(11), 870-876. DOI: 10.1119/1.5042245
  • Davis, M. (2007). Guitar strings as standing waves: A demonstration. Journal of Chemical Education, 84(8), 1287-1289. DOI: 10.1021/ed084p1287
  • Demir, S. B., & Bütüner, K. (2014). Investigation of the opinions of pre-service social studies teachers regarding the field test. Mersin University Journal of the Faculty of Education, 10(2), 113-128. DOI: 10.17860/efd.79620
  • Dicle Erdamar, I. Y. (2019). Analysis of high school physics curriculum in the context of program development. Harran Education Journal, 4(2), 29-44. DOI: 10.22596/2019.0402.29.44
  • Duit, R. (2009). Students’ and teachers’ conceptions and science education. Retrieved from, http://archiv.ipn.uni-kiel.de/stcse/bibint.html
  • Fang, T. S. (2007). Analysis on non-resonance standing waves and vibration tracks of strings. European Journal of Physics, 28(4), 665-672. DOI: 10.1088/0143-0807/28/4/006
  • Halliday, D., Resnick, R., & Walker, J. (2013). Fundamentals of physics (10th ed.). Hoboken, NJ: Wiley.
  • Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056-1065. DOI: 10.1119/1.14031
  • Kaltakçı Gürel, D., Ölmeztürk, A., Durmaz, B., Abul, E., Özün, H., Irak, M., Subaşı, Ö., & Baydar, Z. (2017). The content analysis of the graduate theses in physics education in Turkey between the years 1990 and 2016. Gazi Üniversitesi Eğitim Fakültesi Dergisi (GEFAD), 37(3), 1141-1172. DOI: 10.17152/gefad.335238
  • Kennedy, E. M., & De Bruyn, J. R. (2011). Understanding of mechanical waves among second-year physics majors. Canadian Journal of Physics, 89(11), 1155-1161. DOI: 10.1139/p11-113
  • Lai, Y. S., & Hsu, J. M. (2011). Development trend analysis of augmented reality system in educational applications. 2011 International conference on Electrical and Control Engineering, ICECE 2011 - Proceedings, 6527-6531. DOI: 10.1109/ICECENG.2011.6056941
  • Linder, C. J. (1992). Understanding sound: So what is the problem? Physics Education, 27(5), 258-264. DOI: 10.1088/0031-9120/27/5/004
  • Lincoln, J. (2020). The Lincoln’s tube: A new apparatus for demonstrating sound standing waves. The Physics Teacher, 58(1), 74-75. DOI: 10.1119/1.5141985
  • Marton, F. (1981). Phenomenography - Describing conceptions of the world around us. Instructional Science, 10(2), 177-200. DOI: 10.1007/BF00132516
  • Maurines, L. (1992). Spontaneous reasoning on the propagation of visible mechanical signals. International Journal of Science Education, 14(3), 279-293. DOI: 10.1080/0950069920140305
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage Publications.
  • Patton, M. Q. (2014). Qualitative research & Evaluation methods. Sage Publications.
  • Radinschi, I., Fratiman, V., Ciocan, V., & Cazacu, M. M. (2017). Interactive computer simulations for standing waves. Computer Applications in Engineering Education, 25(3), 521-529. DOI: 10.1002/cae.21818
  • Risch, M. (2010). Investigations about science misconceptions. Ithaca, NY: Cornell University. Arxiv Preprint ArXiv10095524, September, 30. Retrieved from, http://arxiv.org/abs/1009.5524
  • Rutherford, C. (2013). A fresh look at longitudinal standing waves on a spring. The Physics Teacher, 51(1), 22-24. DOI: 10.1119/1.4772032
  • Serway, A. R., & Beichner, J. R. (1997). Physics for scientists and engineers with modern physics. In Choice Reviews Online (Vol. 34, Issue 07). DOI: 10.5860/choice.34-3910
  • Sharma, M. D., Millar, R. M., Smith, A., & Sefton, I. M. (2004). Students’ understandings of gravity in an orbiting space-ship. Research in Science Education, 34(3), 267-289. DOI: 10.1023/B:RISE.0000044605.00448.bd
  • Smith, J. A., Flowers, P., & Larkin, M. (2009). Interpretative phenomenological analysis: Theory, method, and research. Sage Publications. Retrieved from, https://uk.sagepub.com/en-gb/eur/interpretative-phenomenological-analysis/book227528
  • Tipler, P. A., & Mosca, G. (2003). Physics for scientists and engineers. Retrieved from, https://www.pearson.com/uk/educators/higher-education-educators/program/Fishbane-Physics-for-Scientists-and-Engineers-Vol-I-Extended-Version-and-Physics-for-Science-and-Engineers-Vol-II-Package-2nd-Edition/PGM1793879.html
  • Tongchai, A., Sharma, M. D., Johnston, I. D., Arayathanitkul, K., & Soankwan, C. (2009). Developing, evaluating and demonstrating the use of a conceptual survey in mechanical waves. International Journal of Science Education, 31(18), 2437-2457. DOI: 10.1080/09500690802389605
  • Van Manen, M. (1990). Researching lived experience. New York: State University of New York. Retrieved from, https://www.sunypress.edu/pdf/52136.pdf
  • Ventura, D. R., de Carvalho, P. S., & Dias, M. A. (2017). Standing waves in an elastic spring: A systematic study by video analysis. The Physics Teacher, 55(4), 232-234. DOI: 10.1119/1.4978723
  • Westbroek, H., Klaassen, K., Bulte, A., & Pilot, A. (2005). Characteristics of meaningful chemistry education. In Research and the Quality of Science Education (pp. 67–76). DOI: 10.1007/1-4020-3673-6_6
  • Wittmann, M. C. (2002). The object coordination class applied to wave pulses: Analysing student reasoning in wave physics. International Journal of Science Education, 24(1), 97-118. DOI: 10.1080/09500690110066944
  • Yalçın, Y. (2008). Effects of cooperative learning on students’ achievement relating water waves. (Unpublished master’s thesis). Graduate School of Educational Sciences, Dokuz Eylul University, İzmir.
  • Yavuz Özdemir, G., & Kocakülah, M. S. (2017). Effects of application sequences of different instructional activities on students’ conceptual changes about diffraction and interference. Amasya Education Journal, 6(2), 423-453. Retrieved from, https://dergipark.org.tr/tr/pub/amauefd/issue/33345/312240
  • Yıldırım, A., & Şimşek, H. (2018). Sosyal Bilimlerde Nitel Araştırmalar [Qualitative Researches in Social Sciences]. Ankara: Seçkin Publication.
  • Young, H. D., Freedman, R. A., & Ford, A. L. (2004). Sears and Zemansky’s university physics: with modern physics. Pearson Addison Wesley. Retrieved from, https://lib.ugent.be/en/catalog/rug01:001316743
  • Zacharia, Z. (2003). Beliefs, attitudes, and intentions of science teachers regarding the educational use of computer simulations and inquiry-based experiments in physics. Journal of Research in Science Teaching, 40(8), 792-823. DOI: 10.1002/tea.10112
  • Zeng, L., Smith, C., Poelzer, G. H., Rodriguez, J., Corpuz, E., & Yanev, G. (2014). Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks. Physical Review Special Topics - Physics Education Research, 10(2), 020110-1-020110-24. DOI: 10.1103/PhysRevSTPER.10.020110.

Pre-service teachers’ conceptual understanding of the standing wave concept

Year 2021, , 1 - 22, 31.01.2021
https://doi.org/10.19128/turje.744113

Abstract

In this study, the aim is to determine pre-service teachers’ conceptual understanding of the standing wave concept. Pre-service teachers’ conceptual understanding of the standing wave concept was determined through the phenomenological pattern, and the aim was to lay bare how they made sense of this phenomenon, how they perceived and experienced it. The study was conducted with the participation of 13 pre-service teachers. One closed-end question was used to determine pre-service teachers’ demographic characteristic, and five open-ended questions were used to determine their conceptual understanding of the standing wave concept. Data were obtained through semi-structured interviews conducted individually with the pre-service teachers. Because their answers varied, they were defined and analyzed through a new map with “Answer Sculptures.” At the end of the study, it was determined that pre-service teachers have issues with their conceptual understanding of the standing wave concept; they have incomplete and non-scientific information. It was also seen that only a couple of pre-service teachers have a complete understanding of the standing wave concept.

References

  • Balta, N. (2018). High school teachers’ understanding of blackbody radiation. International Journal of Science and Mathematics Education, 16(1), 23-43. DOI: 10.1007/s10763-016-9769-z
  • Barniol, P., & Zavala, G. (2017). The mechanical waves conceptual survey: An analysis of university students’ performance, and recommendations for instruction. Eurasia Journal of Mathematics, Science and Technology Education, 13(3), 929-952. DOI: 10.12973/eurasia.2017.00651a
  • Bhathal, R., Sharma, M. D., & Mendez, A. (2010). Educational analysis of a first year engineering physics experiment on standing waves: Based on the ACELL approach. European Journal of Physics, 31(1), 23-35. DOI: 10.1088/0143-0807/31/1/003
  • Bozzo, G., de Sabata, F., Pistori, S., & Monti, F. (2019). Imaging and studying standing waves with a homemade melde-type apparatus and ınformation and communication technology (ICT). The Physics Teacher, 57(9), 612-615. DOI: 10.1119/1.5135790
  • Brew, A. (2001). Conceptions of research: A phenomenographic study. Studies in Higher Education, 26(3), 271-285. DOI: 10.1080/03075070120076255
  • Brody, J., Villhauer, E., & Espiritu, H. (2014). Standing waves between a microwave transmitter and receiver. American Journal of Physics, 82(12), 1157-1160. DOI: 10.1119/1.4896355
  • Caleon, I. S., & Subramaniam, R. (2010). Do students know what they know and what they don’t know? Using a four-tier diagnostic test to assess the nature of students’ alternative conceptions. Research in Science Education, 40(3), 313-337. DOI: 10.1007/s11165-009-9122-4
  • Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and procedures for developing grounded theory (3rd edition). Sage Publications. DOI: 10.4135/9781452230153
  • Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th edition). Sage Publications. Retrieved from, http://fe.unj.ac.id/wp-content/uploads/2019/08/Research-Design_Qualitative-Quantitative-and-Mixed-Methods-Approaches.pdf
  • Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th edition). Sage Publications.
  • Creswell, J. W., & Poth, C. N. (2015). Qualitative inquiry & Research design: Choosing among five approaches (4th edition). Sage Publications. DOI: 10.13187/rjs.2017.1.30
  • Crockett, A., & Rueckner, W. (2018). Visualizing sound waves with schlieren optics. American Journal of Physics, 86(11), 870-876. DOI: 10.1119/1.5042245
  • Davis, M. (2007). Guitar strings as standing waves: A demonstration. Journal of Chemical Education, 84(8), 1287-1289. DOI: 10.1021/ed084p1287
  • Demir, S. B., & Bütüner, K. (2014). Investigation of the opinions of pre-service social studies teachers regarding the field test. Mersin University Journal of the Faculty of Education, 10(2), 113-128. DOI: 10.17860/efd.79620
  • Dicle Erdamar, I. Y. (2019). Analysis of high school physics curriculum in the context of program development. Harran Education Journal, 4(2), 29-44. DOI: 10.22596/2019.0402.29.44
  • Duit, R. (2009). Students’ and teachers’ conceptions and science education. Retrieved from, http://archiv.ipn.uni-kiel.de/stcse/bibint.html
  • Fang, T. S. (2007). Analysis on non-resonance standing waves and vibration tracks of strings. European Journal of Physics, 28(4), 665-672. DOI: 10.1088/0143-0807/28/4/006
  • Halliday, D., Resnick, R., & Walker, J. (2013). Fundamentals of physics (10th ed.). Hoboken, NJ: Wiley.
  • Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056-1065. DOI: 10.1119/1.14031
  • Kaltakçı Gürel, D., Ölmeztürk, A., Durmaz, B., Abul, E., Özün, H., Irak, M., Subaşı, Ö., & Baydar, Z. (2017). The content analysis of the graduate theses in physics education in Turkey between the years 1990 and 2016. Gazi Üniversitesi Eğitim Fakültesi Dergisi (GEFAD), 37(3), 1141-1172. DOI: 10.17152/gefad.335238
  • Kennedy, E. M., & De Bruyn, J. R. (2011). Understanding of mechanical waves among second-year physics majors. Canadian Journal of Physics, 89(11), 1155-1161. DOI: 10.1139/p11-113
  • Lai, Y. S., & Hsu, J. M. (2011). Development trend analysis of augmented reality system in educational applications. 2011 International conference on Electrical and Control Engineering, ICECE 2011 - Proceedings, 6527-6531. DOI: 10.1109/ICECENG.2011.6056941
  • Linder, C. J. (1992). Understanding sound: So what is the problem? Physics Education, 27(5), 258-264. DOI: 10.1088/0031-9120/27/5/004
  • Lincoln, J. (2020). The Lincoln’s tube: A new apparatus for demonstrating sound standing waves. The Physics Teacher, 58(1), 74-75. DOI: 10.1119/1.5141985
  • Marton, F. (1981). Phenomenography - Describing conceptions of the world around us. Instructional Science, 10(2), 177-200. DOI: 10.1007/BF00132516
  • Maurines, L. (1992). Spontaneous reasoning on the propagation of visible mechanical signals. International Journal of Science Education, 14(3), 279-293. DOI: 10.1080/0950069920140305
  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis: An expanded sourcebook. Sage Publications.
  • Patton, M. Q. (2014). Qualitative research & Evaluation methods. Sage Publications.
  • Radinschi, I., Fratiman, V., Ciocan, V., & Cazacu, M. M. (2017). Interactive computer simulations for standing waves. Computer Applications in Engineering Education, 25(3), 521-529. DOI: 10.1002/cae.21818
  • Risch, M. (2010). Investigations about science misconceptions. Ithaca, NY: Cornell University. Arxiv Preprint ArXiv10095524, September, 30. Retrieved from, http://arxiv.org/abs/1009.5524
  • Rutherford, C. (2013). A fresh look at longitudinal standing waves on a spring. The Physics Teacher, 51(1), 22-24. DOI: 10.1119/1.4772032
  • Serway, A. R., & Beichner, J. R. (1997). Physics for scientists and engineers with modern physics. In Choice Reviews Online (Vol. 34, Issue 07). DOI: 10.5860/choice.34-3910
  • Sharma, M. D., Millar, R. M., Smith, A., & Sefton, I. M. (2004). Students’ understandings of gravity in an orbiting space-ship. Research in Science Education, 34(3), 267-289. DOI: 10.1023/B:RISE.0000044605.00448.bd
  • Smith, J. A., Flowers, P., & Larkin, M. (2009). Interpretative phenomenological analysis: Theory, method, and research. Sage Publications. Retrieved from, https://uk.sagepub.com/en-gb/eur/interpretative-phenomenological-analysis/book227528
  • Tipler, P. A., & Mosca, G. (2003). Physics for scientists and engineers. Retrieved from, https://www.pearson.com/uk/educators/higher-education-educators/program/Fishbane-Physics-for-Scientists-and-Engineers-Vol-I-Extended-Version-and-Physics-for-Science-and-Engineers-Vol-II-Package-2nd-Edition/PGM1793879.html
  • Tongchai, A., Sharma, M. D., Johnston, I. D., Arayathanitkul, K., & Soankwan, C. (2009). Developing, evaluating and demonstrating the use of a conceptual survey in mechanical waves. International Journal of Science Education, 31(18), 2437-2457. DOI: 10.1080/09500690802389605
  • Van Manen, M. (1990). Researching lived experience. New York: State University of New York. Retrieved from, https://www.sunypress.edu/pdf/52136.pdf
  • Ventura, D. R., de Carvalho, P. S., & Dias, M. A. (2017). Standing waves in an elastic spring: A systematic study by video analysis. The Physics Teacher, 55(4), 232-234. DOI: 10.1119/1.4978723
  • Westbroek, H., Klaassen, K., Bulte, A., & Pilot, A. (2005). Characteristics of meaningful chemistry education. In Research and the Quality of Science Education (pp. 67–76). DOI: 10.1007/1-4020-3673-6_6
  • Wittmann, M. C. (2002). The object coordination class applied to wave pulses: Analysing student reasoning in wave physics. International Journal of Science Education, 24(1), 97-118. DOI: 10.1080/09500690110066944
  • Yalçın, Y. (2008). Effects of cooperative learning on students’ achievement relating water waves. (Unpublished master’s thesis). Graduate School of Educational Sciences, Dokuz Eylul University, İzmir.
  • Yavuz Özdemir, G., & Kocakülah, M. S. (2017). Effects of application sequences of different instructional activities on students’ conceptual changes about diffraction and interference. Amasya Education Journal, 6(2), 423-453. Retrieved from, https://dergipark.org.tr/tr/pub/amauefd/issue/33345/312240
  • Yıldırım, A., & Şimşek, H. (2018). Sosyal Bilimlerde Nitel Araştırmalar [Qualitative Researches in Social Sciences]. Ankara: Seçkin Publication.
  • Young, H. D., Freedman, R. A., & Ford, A. L. (2004). Sears and Zemansky’s university physics: with modern physics. Pearson Addison Wesley. Retrieved from, https://lib.ugent.be/en/catalog/rug01:001316743
  • Zacharia, Z. (2003). Beliefs, attitudes, and intentions of science teachers regarding the educational use of computer simulations and inquiry-based experiments in physics. Journal of Research in Science Teaching, 40(8), 792-823. DOI: 10.1002/tea.10112
  • Zeng, L., Smith, C., Poelzer, G. H., Rodriguez, J., Corpuz, E., & Yanev, G. (2014). Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks. Physical Review Special Topics - Physics Education Research, 10(2), 020110-1-020110-24. DOI: 10.1103/PhysRevSTPER.10.020110.
There are 46 citations in total.

Details

Primary Language English
Subjects Other Fields of Education
Journal Section Research Articles
Authors

Işıl Aykutlu 0000-0003-4068-0453

Sevim Bezen 0000-0002-0304-5314

Celal Bayrak 0000-0002-9269-2029

Publication Date January 31, 2021
Acceptance Date January 25, 2021
Published in Issue Year 2021

Cite

APA Aykutlu, I., Bezen, S., & Bayrak, C. (2021). Pre-service teachers’ conceptual understanding of the standing wave concept. Turkish Journal of Education, 10(1), 1-22. https://doi.org/10.19128/turje.744113

Turkish Journal of Education is licensed under CC BY-NC 4.0