Research Article
BibTex RIS Cite

Sıkıştırılmış bentonitten kolloid oluşumu açısından hidrolik etkinin incelenmesi

Year 2024, Volume: 16 Issue: 2, 550 - 563, 30.06.2024
https://doi.org/10.29137/umagd.1390384

Abstract

Fiziksel olarak saflaştırılmış ve sıkıştırılmış bentonitin farklı akış hızları altında erozyon miktarı, aşınan parçacıkların boyutu ve şişme alanı üzerine bir dizi deney yapılmıştır. Aşınan parçacıkların boyutunu ve miktarını belirlemek için dinamik ışık saçılımı yöntemi (DLS) ve şişme alanını belirlemek için Autocad programı kullanılmıştır. Sıkıştırılmış bentonit ve kırılmış granitin temas ettiği yerlerde, yeraltı suyu bentonitin aşınmasında önemli bir rol oynar. Sıkıştırılmış bentonitin su ile teması, su ile doygunluğu ve ardından şişmesi ve etrafındaki boşluklara girmesi, kolloid parçacıkların oluşumu için birincil adımlardır. Sıkıştırılmış bentonitin aşınmasını etkileyen faktörler yeraltı suyu akış hızı, bentonitle temas eden suyun iyonik gücü, suyun pH'ı vb.dir. Sıkıştırılmış bentonit tamponun tasarlanan hizmet ömrü boyunca maruz kalacağı yeraltı suyu bentonit tamponun sağlamlığını azaltır Sıkıştırılmış bentonitin erozyonu sadece fiziksel stabilitesini etkilemekle kalmaz, aynı zamanda emdiği radyonüklitlerin taşınmasına da neden olur Deneysel bir metodoloji sunulmuştur. Deneysel sonuçlar, artan akış hızı ile aşınan bentonit miktarının arttığını ve şişme alanının arttığını göstermiştir. Akış hızı ile aşınan parçacıkların boyutu arasında bir korelasyon bulunamamıştır.

References

  • AB, S. K. (2011). Long-term safety for the final repository for spent nuclear fuel at Forsmark. Vilks, P., & Miller, N. H. (2010). Laboratory bentonite erosion experiments in a synthetic and a natural fracture. Nuclear Waste Management Organization Report NWMO TR-2010-16. Toronto, Ontario.
  • Baik, M. H., Cho, W. J., & Hahn, P. S. (2007). Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite. Engineering Geology, 91(2-4), 229-239.
  • Berne, B. J., & Pecora, R. (2000). Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation.
  • Bülbül,S. (2022). “The effect of flow rate on the erosion of physically purified compacted bentonite”, MACE PGR Conference Proceeding Book, 56-60, Manchester University, 01 July 2022.
  • Chapman, N. A., & Mc Kinley, I. G. (1987). The geological disposal of nuclear waste.
  • Cho, W. J., Lee, J. O., Chun, K. S., & Park, H. S. (1999). Analysis of functional criteria for buffer material in a high-level radioactive waste repository. Nuclear Engineering and Technology, 31(1), 116-132.
  • Coons, W. E., Moore, E. L., Smith, M. J., & Kaser, J. D. (1980). Functions of an engineered barrier system for a nuclear waste repository in basalt (No. RHO-BWI-LD-23). Atomics International Div., Richland, WA (USA). Rockwell Hanford Operations.
  • Geckeis, H., Schäfer, T., Hauser, W., Rabung, T., Missana, T., Degueldre, C., ... & Alexander, W. R. (2004). Results of the colloid and radionuclide retention experiment (CRR) at the Grimsel Test Site (GTS), Switzerland–impact of reaction kinetics and speciation on radionuclide migration.
  • Gong, Z., Liao, L., Lv, G., & Wang, X. (2016). A simple method for physical purification of bentonite. Applied Clay Science, 119, 294-300.
  • Grindrod, P., Peletier, M., & Takase, H. (1999). Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids. Engineering Geology, 54(1-2), 159-165.
  • Kurosawa, S., Kato, H., Ueta, S., Yokoyama, K., & Fujihara, H. (1999). Erosion properties and dispersion-flocculation behavior of bentonite particles. MRS Online Proceedings Library (OPL), 556, 679.
  • Missana, T., Alonso, Ú., & Turrero, M. J. (2003). Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository. Journal of Contaminant Hydrology, 61(1-4), 17-31.
  • Moreno, L., Neretnieks, I., & Liu, L. (2010). Modelling of erosion of bentonite gel by gel/sol flow
  • Reid, C., Lunn, R., El Mountassir, G., & Tarantino, A. (2015). A mechanism for bentonite buffer erosion in a fracture with a naturally varying aperture. Mineralogical Magazine, 79(6), 1485-1494.
  • Schäfer, T., Huber, F., Seher, H., Missana, T., Alonso, U., Kumke, M., ... & Enzmann, F. (2012). Nanoparticles and their influence on radionuclide mobility in deep geological formations. Applied geochemistry, 27(2), 390-403.
  • Schatz, T., Kanerva, N., Martikainen, J., Sane, P., Olin, M., Seppälä, A., & Koskinen, K. (2013). Buffer erosion in dilute groundwater (No. POSIVA--12-44). Posiva Oy.

Investigation of hydraulic effect in terms of colloid formation from compacted bentonite

Year 2024, Volume: 16 Issue: 2, 550 - 563, 30.06.2024
https://doi.org/10.29137/umagd.1390384

Abstract

A series of experiments were conducted an investigation into the amount of erosion, size of eroded particles, and swelling area of physically purified and compacted bentonite under different flow rates. Dynamic light scattering method(DLS) was used to determine the size and amount of eroded particles and Autocad programme was used to determine the swelling area.Where compacted bentonite and crushed granite come into contact, groundwater plays an important role in the erosion of bentonite.Contact of compacted bentonite with water, its saturation with water and its subsequent swelling and entry into the voids around it are the primary steps for the formation of colloid particles. Factors affecting the erosion of compacted bentonite are groundwater flow rate, ionic strength of the water contacting the bentonite, pH of the water, etc. The groundwater to which the compacted bentonite buffer will be exposed during the designed service life of the compacted bentonite buffer reduces the robustness of the bentonite buffer.Erosion of compacted bentonite not only affects its physical stability but also causes the transport of radionuclides it absorbs.An experimental methodology is presented. The experimental results showed that with increasing flow rate the amount of eroded bentonite increases and the swelling area increases. No correlation was found between the flow rate and the size of the eroded particles.

References

  • AB, S. K. (2011). Long-term safety for the final repository for spent nuclear fuel at Forsmark. Vilks, P., & Miller, N. H. (2010). Laboratory bentonite erosion experiments in a synthetic and a natural fracture. Nuclear Waste Management Organization Report NWMO TR-2010-16. Toronto, Ontario.
  • Baik, M. H., Cho, W. J., & Hahn, P. S. (2007). Erosion of bentonite particles at the interface of a compacted bentonite and a fractured granite. Engineering Geology, 91(2-4), 229-239.
  • Berne, B. J., & Pecora, R. (2000). Dynamic light scattering: with applications to chemistry, biology, and physics. Courier Corporation.
  • Bülbül,S. (2022). “The effect of flow rate on the erosion of physically purified compacted bentonite”, MACE PGR Conference Proceeding Book, 56-60, Manchester University, 01 July 2022.
  • Chapman, N. A., & Mc Kinley, I. G. (1987). The geological disposal of nuclear waste.
  • Cho, W. J., Lee, J. O., Chun, K. S., & Park, H. S. (1999). Analysis of functional criteria for buffer material in a high-level radioactive waste repository. Nuclear Engineering and Technology, 31(1), 116-132.
  • Coons, W. E., Moore, E. L., Smith, M. J., & Kaser, J. D. (1980). Functions of an engineered barrier system for a nuclear waste repository in basalt (No. RHO-BWI-LD-23). Atomics International Div., Richland, WA (USA). Rockwell Hanford Operations.
  • Geckeis, H., Schäfer, T., Hauser, W., Rabung, T., Missana, T., Degueldre, C., ... & Alexander, W. R. (2004). Results of the colloid and radionuclide retention experiment (CRR) at the Grimsel Test Site (GTS), Switzerland–impact of reaction kinetics and speciation on radionuclide migration.
  • Gong, Z., Liao, L., Lv, G., & Wang, X. (2016). A simple method for physical purification of bentonite. Applied Clay Science, 119, 294-300.
  • Grindrod, P., Peletier, M., & Takase, H. (1999). Mechanical interaction between swelling compacted clay and fractured rock, and the leaching of clay colloids. Engineering Geology, 54(1-2), 159-165.
  • Kurosawa, S., Kato, H., Ueta, S., Yokoyama, K., & Fujihara, H. (1999). Erosion properties and dispersion-flocculation behavior of bentonite particles. MRS Online Proceedings Library (OPL), 556, 679.
  • Missana, T., Alonso, Ú., & Turrero, M. J. (2003). Generation and stability of bentonite colloids at the bentonite/granite interface of a deep geological radioactive waste repository. Journal of Contaminant Hydrology, 61(1-4), 17-31.
  • Moreno, L., Neretnieks, I., & Liu, L. (2010). Modelling of erosion of bentonite gel by gel/sol flow
  • Reid, C., Lunn, R., El Mountassir, G., & Tarantino, A. (2015). A mechanism for bentonite buffer erosion in a fracture with a naturally varying aperture. Mineralogical Magazine, 79(6), 1485-1494.
  • Schäfer, T., Huber, F., Seher, H., Missana, T., Alonso, U., Kumke, M., ... & Enzmann, F. (2012). Nanoparticles and their influence on radionuclide mobility in deep geological formations. Applied geochemistry, 27(2), 390-403.
  • Schatz, T., Kanerva, N., Martikainen, J., Sane, P., Olin, M., Seppälä, A., & Koskinen, K. (2013). Buffer erosion in dilute groundwater (No. POSIVA--12-44). Posiva Oy.
There are 16 citations in total.

Details

Primary Language English
Subjects Civil Geotechnical Engineering
Journal Section Articles
Authors

Süleyman Bülbül 0009-0002-1995-5387

Early Pub Date June 30, 2024
Publication Date June 30, 2024
Submission Date November 13, 2023
Acceptance Date January 26, 2024
Published in Issue Year 2024 Volume: 16 Issue: 2

Cite

APA Bülbül, S. (2024). Investigation of hydraulic effect in terms of colloid formation from compacted bentonite. International Journal of Engineering Research and Development, 16(2), 550-563. https://doi.org/10.29137/umagd.1390384

All Rights Reserved. Kırıkkale University, Faculty of Engineering and Natural Science.