Araştırma Makalesi
BibTex RIS Kaynak Göster

Nesfatin-1 ve Oreksin A Nöronları Arasındaki Etkileşimin İmmünohistokimyasal Olarak Araştırılması

Yıl 2019, Cilt: 45 Sayı: 3, 243 - 249, 01.12.2019
https://doi.org/10.32708/uutfd.596512

Öz

Nesfatin-1 besin alımını baskılayan, oreksin A ise tetikleyen birbirine zıt etkili iki peptidtir. Bu peptidler hipotalamusta yerleşik olan nöron grupları tarafından sentezlenmekte ve salıverilmektedir. Çalışmamız kapsamında, besin alımının düzenlenmesinde rol oynayan bu iki önemli peptiderjik sistemin birbirleri üzerindeki olası etkileşimi immünohistokimyasal yöntemlerle araştırılmıştır. Bu amaca yönelik olarak, ilgili peptidlerin deneklere verilmesi sonucu diğer peptidi sentezleyen nöronlardaki aktivasyon değişiklikleri incelenmiştir. Bir transkripsiyon faktörü olan c-Fos proteininin yanı sıra, iki farklı hücre içi yolağın aktivasyon belirteci olan fosforile STAT5 (sinyal çevrimcileri ve transkripsiyon aktivatörleri) ve fosforile CREB (c-AMP-yanıtlı element bağlayıcı protein, p-CREB) immün reaktivitesinin varlığı, nöronal aktivasyonun belirlenmesinde kullanılmıştır. Çalışmalarda hipotalamusun supraoptik çekirdeklerinde lokalize nesfatin nöronları ile lateral hipotalamusta lokalize oreksin A nöronları incelenmiştir.Çalışmaların sonucunda nesfatin-1 nöronlarına ait aksonların, oreksin A nöronları üzerinde sinaps oluşturabileceğini düşündürecek şekilde sonlanmalar yaptığı görülmüştür. Ancak nesfatin-1 verilen deneklerin oreksin A nöronlarında c-Fos, pCREB veya pSTAT5 proteinlerinin ekspresyonunda bir değişiklik görülmemiştir. Benzer şekilde oreksin A verilen deneklere ait nesfatin-1 nöronlarında da bu belirteçleri içeren yolaklara ait bir aktivasyon gözlenmemiştir. Sonuç olarak, nesfatin-1 nöronlarının oreksin A nöronlarıyla sinaps oluşturabileceği, nesfatin-1 ve oreksin A peptidlerinin birbiri üzerinde, c-Fos, CREB ve STAT proteinlerinin rol aldığı hücre içi yolakları kullanarak aktive edici etkilerinin olmadığı, ancak her iki peptidi eksprese eden nöronlarda, bu yolakların kullanımıyla farklı moleküllerin besin alımının kontrolü doğrultusunda düzenleyici etki gösterebilecekleri düşünülmüştür.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

113S377

Teşekkür

Bu makalede yer alan laboratuvarımıza ait sonuçlar, TÜBİTAK tarafından desteklenen 113S377 nolu proje kapsamında yapılan çalışmalardan elde edilmiştir.

Kaynakça

  • Oh I, Shimizu H, Satoh T, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006;443:709-12.
  • Stengel A, Tache Y. Nesfatin-1-Role as possible new potent regulator of food intake. Regul Pept 2010;163:18-23.
  • Stengel A, Goebel M, Wang LX, Tache Y. Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: Role as regulators of food intake and body weight. Peptides 2010;31:357-69.
  • Shimizu H, Ohsaki A, Oh I, Okada S, Mori M. A new anorexigenic protein, nesfatin-1. Peptides 2009;30:995-8.
  • Palasz A, Krzystanek M, Worthington J, et al. Nesfatin-1, a unique regulatory neuropeptide of the brain. Neuropeptides 2012;46:105-12.
  • Atsuchi K, Asakawa A, Ushikai M, et al. Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroreport 2010;21:1008-11.
  • Goebel M, Stengel A, Wang L, et al. Central nesfatin-1 reduces the noc-turnal food intake in mice by reducing meal size and increasing inter-mealintervals. Peptides 2011;32:36-43.
  • Chen X, Dong J, Jiang ZY. Nesfatin-1 influences the excitability of glucosensing neurons in the hypothalamic nuclei and inhibits the food intake. Regul Peptides 2012;177:21-6.
  • Dong J, Guan HZ, Jiang ZY. Nesfatin-1 influences the excitability of glucosensing neurons in the dorsal vagal complex and inhibits food intake. Plos One 2014;9:e98967.
  • Moreau JM, Ciriello J. Nesfatin-1 induces Fos expression and elicits dipsogenic responses in subfornical organ. Behav Brain Res 2013;250:343-50.
  • Kerbel B, Unniappan S. Nesfatin-1 suppresses energy intake co-localises ghrelin in the brain and gut, and alters ghrelin, cholecystokinin and orexin mRNA expression in goldfish. J Neuroendocrinol 2012;24:366-7.
  • Stengel A. Nesfatin-1-More than a food intake regulatory peptide. Peptides 2015;72:175-83.
  • Stengel A, Taché Y. Role of NUCB2/Nesfatin-1 in the Hypothalamic Control of Energy Homeostasis. Horm Metab Res 2013;45:975-79.
  • Pan WH, Hung HC, Kastin AJ. Nesfatin-1 crosses the blood brain barrier without saturation. Peptides 2007;28:2223-8.
  • Price TO, Samson WK, Niehoff ML, et al. Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides 2007;28:2372-81.
  • de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 1998;95:322-7.
  • Date Y, Ueta Y, Yamashita H, et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci U S A 1999;96:748-53.
  • Stenberg D. Neuroanatomy and neurochemistry of sleep. Cell Mol Life Sci 2007;64:1187 204.
  • Willie JT, Chemelli RM, Sinton CM, Yanagisawa M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 2001;24:429-58.
  • Shirasaka T, Kunitake T, Takasaki M, Kannan H. Neuronal effects of orexins: relevant to sympathetic and cardiovascular functions. Regul Pept 2002;104:91-5.
  • Ferguson AV, Samson WK. The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Front Neuroendocrinol 2003;24:141-50.
  • Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998;92:573-85.
  • Lubkin M, Stricker-Krongrad A. Independent feeding and metabolic actions of orexins in mice. Biochem Biophys Res Commun 1998;253:241-5.
  • Eriksson M, Ceccatelli S, Uvnäs-Moberg K, et al. Expression of Fos-related antigens, oxytocin, dynorphin and galanin in the paraventricular and supraoptic nuclei of lactating rats. Neuroendocrinology 1996;63:356-67.
  • Bromberg J, Chen X. STAT proteins: Signal tranducers and activators of transcription. Methods in Enzymol 2001;333:138-51.
  • Bromberg J, Darnell JE. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000;19:2468-73.
  • Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002;35:605-23.
  • Paxinos G, Watson C, (eds). The rat brain in stereotaxic coordinates. 6th edition. Elsevier Academic Press: Amsterdam; 2009.
  • Ferguson, AV, Samson, WK. The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Front Neuroendocrinol 2003;24:141-50.
  • Eyigor O, Minbay Z, Cavusoglu I. Activation of orexin neurons through non-NMDA glutamate receptors evidenced by c-Fos immunohistochemistry. Endocrine 2010;37:167-72.
  • Kageyama K, Suda T. Transcriptional Regulation of Hypothalamic Corticotropin-Releasing Factor Gene. Vitam Horm 2010;82:301-17.
  • Lechan RM, Fekete C. Role of melanocortin signaling in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Peptides 2006;27:310-25.
  • Gu GB, Rojo AA, Zee MC. Ju Y, Simerly RB. Hormonal regulation of CREB phosphorylation in the anteroventral periventricular nucleus. J Neurosci 1996;16:3035-44.
  • Sarkar S, Legradi G, Lechan RM. Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain Res 2002;945:50-9.
  • Funabashi T, Hagiwara H, Mogi K, Mitsushima D, Shinohara K, Kimura F. Sex differences in the responses of orexin neurons in the lateral hypothalamic area and feeding behavior to fasting. Neurosci Lett 2009;463:31-4.
  • Ladyman SR, Fieldwick DM, Grattan DR. Suppression of leptin-induced hypothalamic JAK/STAT signalling and feeding response during pregnancy in the mouse. Reproduction 2012;144:83-90.
  • Brown RSE, Piet R, Herbison AE, Grattan DR. Differential Actions of Prolactin on Electrical Activity and Intracellular Signal Transduction in Hypothalamic Neurons. Endocrinology 2012;153:2375-84.
  • Severi I, Senzacqua M, Mondini E, Fazioli F, Cinti S, Giordano A. Activation of transcription factors STAT1 and STAT5 in the mouse median eminence after systemic ciliary neurotrophic factor administration. Brain Res 2015;1622:217-29.
  • Pan WH, Hung HC, Kastin AJ. Nesfatin-1 crosses the blood brain barrier without saturation. Peptides 2007;28:2223-8.
  • Price TO, Samson WK, Niehoff ML, Banks WA. Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides 2007;28:2372-81.
  • Kastin AJ, Akerstrom V. Orexin A but not orexin B rapidly enters brain from blood by simple diffusion. J Pharmacol Exp Ther 1999;289:219-23.

Immunohistochemical Investigation of Interaction Between Nesfatin-1 and Orexin A Neurons

Yıl 2019, Cilt: 45 Sayı: 3, 243 - 249, 01.12.2019
https://doi.org/10.32708/uutfd.596512

Öz

Nesfatin-1 and orexin A are oppositely acting two peptides, while nesfatin-1 suppresses food intake, orexin A stimulates this function. These peptides are synthesized and secreted by neuron groups located in the hypothalamus. In this study, the possible interactions between these two important peptidergic systems that play a role in the regulation of food intake were investigated by using immunohistochemical methods. As a result of the administration of the related peptides to the animals, the activational changes in the neurons synthesizing the other peptides were investigated. In addition to the c-Fos protein which is a transcription factor, we used different cellular signal pathway activation markers such as phosphorylated STAT5 (signal transducers and transcription activators) as well as p-CREB (c-AMP-responsive element binding protein). In these studies, the nesfatin neurons that are localized in the hypothalamic supraoptic nuclei and orexin neurons that are localized in the lateral hypothalamus were examined. The results showed that the nesfatin-1 axons are found to be juxta-positioned on the orexin neurons in order to form a possible synapse. However expression pattern of the c-Fos, pCREB or pSTAT5 proteins in the orexin A neurons showed no difference following the nesfatin-1 injections. Similarly no activation was assessed in the nesfatin-1 neurons after orexin administration. In conclusion, it is suggested that the nesfatin-1 neurons may form synaptic interactions with orexin A neurons, these two neurons cannot activate each other through c-Fos, CREB or STAT proteins, however other molecules may use these pathways in order to regulate these neurons as well as the food intake mechanism.

Proje Numarası

113S377

Kaynakça

  • Oh I, Shimizu H, Satoh T, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature 2006;443:709-12.
  • Stengel A, Tache Y. Nesfatin-1-Role as possible new potent regulator of food intake. Regul Pept 2010;163:18-23.
  • Stengel A, Goebel M, Wang LX, Tache Y. Ghrelin, des-acyl ghrelin and nesfatin-1 in gastric X/A-like cells: Role as regulators of food intake and body weight. Peptides 2010;31:357-69.
  • Shimizu H, Ohsaki A, Oh I, Okada S, Mori M. A new anorexigenic protein, nesfatin-1. Peptides 2009;30:995-8.
  • Palasz A, Krzystanek M, Worthington J, et al. Nesfatin-1, a unique regulatory neuropeptide of the brain. Neuropeptides 2012;46:105-12.
  • Atsuchi K, Asakawa A, Ushikai M, et al. Centrally administered nesfatin-1 inhibits feeding behaviour and gastroduodenal motility in mice. Neuroreport 2010;21:1008-11.
  • Goebel M, Stengel A, Wang L, et al. Central nesfatin-1 reduces the noc-turnal food intake in mice by reducing meal size and increasing inter-mealintervals. Peptides 2011;32:36-43.
  • Chen X, Dong J, Jiang ZY. Nesfatin-1 influences the excitability of glucosensing neurons in the hypothalamic nuclei and inhibits the food intake. Regul Peptides 2012;177:21-6.
  • Dong J, Guan HZ, Jiang ZY. Nesfatin-1 influences the excitability of glucosensing neurons in the dorsal vagal complex and inhibits food intake. Plos One 2014;9:e98967.
  • Moreau JM, Ciriello J. Nesfatin-1 induces Fos expression and elicits dipsogenic responses in subfornical organ. Behav Brain Res 2013;250:343-50.
  • Kerbel B, Unniappan S. Nesfatin-1 suppresses energy intake co-localises ghrelin in the brain and gut, and alters ghrelin, cholecystokinin and orexin mRNA expression in goldfish. J Neuroendocrinol 2012;24:366-7.
  • Stengel A. Nesfatin-1-More than a food intake regulatory peptide. Peptides 2015;72:175-83.
  • Stengel A, Taché Y. Role of NUCB2/Nesfatin-1 in the Hypothalamic Control of Energy Homeostasis. Horm Metab Res 2013;45:975-79.
  • Pan WH, Hung HC, Kastin AJ. Nesfatin-1 crosses the blood brain barrier without saturation. Peptides 2007;28:2223-8.
  • Price TO, Samson WK, Niehoff ML, et al. Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides 2007;28:2372-81.
  • de Lecea L, Kilduff TS, Peyron C, et al. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 1998;95:322-7.
  • Date Y, Ueta Y, Yamashita H, et al. Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci U S A 1999;96:748-53.
  • Stenberg D. Neuroanatomy and neurochemistry of sleep. Cell Mol Life Sci 2007;64:1187 204.
  • Willie JT, Chemelli RM, Sinton CM, Yanagisawa M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 2001;24:429-58.
  • Shirasaka T, Kunitake T, Takasaki M, Kannan H. Neuronal effects of orexins: relevant to sympathetic and cardiovascular functions. Regul Pept 2002;104:91-5.
  • Ferguson AV, Samson WK. The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Front Neuroendocrinol 2003;24:141-50.
  • Sakurai T, Amemiya A, Ishii M, et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998;92:573-85.
  • Lubkin M, Stricker-Krongrad A. Independent feeding and metabolic actions of orexins in mice. Biochem Biophys Res Commun 1998;253:241-5.
  • Eriksson M, Ceccatelli S, Uvnäs-Moberg K, et al. Expression of Fos-related antigens, oxytocin, dynorphin and galanin in the paraventricular and supraoptic nuclei of lactating rats. Neuroendocrinology 1996;63:356-67.
  • Bromberg J, Chen X. STAT proteins: Signal tranducers and activators of transcription. Methods in Enzymol 2001;333:138-51.
  • Bromberg J, Darnell JE. The role of STATs in transcriptional control and their impact on cellular function. Oncogene 2000;19:2468-73.
  • Lonze BE, Ginty DD. Function and regulation of CREB family transcription factors in the nervous system. Neuron 2002;35:605-23.
  • Paxinos G, Watson C, (eds). The rat brain in stereotaxic coordinates. 6th edition. Elsevier Academic Press: Amsterdam; 2009.
  • Ferguson, AV, Samson, WK. The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Front Neuroendocrinol 2003;24:141-50.
  • Eyigor O, Minbay Z, Cavusoglu I. Activation of orexin neurons through non-NMDA glutamate receptors evidenced by c-Fos immunohistochemistry. Endocrine 2010;37:167-72.
  • Kageyama K, Suda T. Transcriptional Regulation of Hypothalamic Corticotropin-Releasing Factor Gene. Vitam Horm 2010;82:301-17.
  • Lechan RM, Fekete C. Role of melanocortin signaling in the regulation of the hypothalamic-pituitary-thyroid (HPT) axis. Peptides 2006;27:310-25.
  • Gu GB, Rojo AA, Zee MC. Ju Y, Simerly RB. Hormonal regulation of CREB phosphorylation in the anteroventral periventricular nucleus. J Neurosci 1996;16:3035-44.
  • Sarkar S, Legradi G, Lechan RM. Intracerebroventricular administration of alpha-melanocyte stimulating hormone increases phosphorylation of CREB in TRH and CRH-producing neurons of the hypothalamic paraventricular nucleus. Brain Res 2002;945:50-9.
  • Funabashi T, Hagiwara H, Mogi K, Mitsushima D, Shinohara K, Kimura F. Sex differences in the responses of orexin neurons in the lateral hypothalamic area and feeding behavior to fasting. Neurosci Lett 2009;463:31-4.
  • Ladyman SR, Fieldwick DM, Grattan DR. Suppression of leptin-induced hypothalamic JAK/STAT signalling and feeding response during pregnancy in the mouse. Reproduction 2012;144:83-90.
  • Brown RSE, Piet R, Herbison AE, Grattan DR. Differential Actions of Prolactin on Electrical Activity and Intracellular Signal Transduction in Hypothalamic Neurons. Endocrinology 2012;153:2375-84.
  • Severi I, Senzacqua M, Mondini E, Fazioli F, Cinti S, Giordano A. Activation of transcription factors STAT1 and STAT5 in the mouse median eminence after systemic ciliary neurotrophic factor administration. Brain Res 2015;1622:217-29.
  • Pan WH, Hung HC, Kastin AJ. Nesfatin-1 crosses the blood brain barrier without saturation. Peptides 2007;28:2223-8.
  • Price TO, Samson WK, Niehoff ML, Banks WA. Permeability of the blood-brain barrier to a novel satiety molecule nesfatin-1. Peptides 2007;28:2372-81.
  • Kastin AJ, Akerstrom V. Orexin A but not orexin B rapidly enters brain from blood by simple diffusion. J Pharmacol Exp Ther 1999;289:219-23.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Klinik Tıp Bilimleri (Diğer)
Bölüm Özgün Araştırma Makaleleri
Yazarlar

Duygu Gök Yurtseven

Zehra Minbay

Özhan Eyigör 0000-0003-3463-7483

Proje Numarası 113S377
Yayımlanma Tarihi 1 Aralık 2019
Kabul Tarihi 27 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 45 Sayı: 3

Kaynak Göster

APA Gök Yurtseven, D., Minbay, Z., & Eyigör, Ö. (2019). Nesfatin-1 ve Oreksin A Nöronları Arasındaki Etkileşimin İmmünohistokimyasal Olarak Araştırılması. Uludağ Üniversitesi Tıp Fakültesi Dergisi, 45(3), 243-249. https://doi.org/10.32708/uutfd.596512
AMA Gök Yurtseven D, Minbay Z, Eyigör Ö. Nesfatin-1 ve Oreksin A Nöronları Arasındaki Etkileşimin İmmünohistokimyasal Olarak Araştırılması. Uludağ Tıp Derg. Aralık 2019;45(3):243-249. doi:10.32708/uutfd.596512
Chicago Gök Yurtseven, Duygu, Zehra Minbay, ve Özhan Eyigör. “Nesfatin-1 Ve Oreksin A Nöronları Arasındaki Etkileşimin İmmünohistokimyasal Olarak Araştırılması”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 45, sy. 3 (Aralık 2019): 243-49. https://doi.org/10.32708/uutfd.596512.
EndNote Gök Yurtseven D, Minbay Z, Eyigör Ö (01 Aralık 2019) Nesfatin-1 ve Oreksin A Nöronları Arasındaki Etkileşimin İmmünohistokimyasal Olarak Araştırılması. Uludağ Üniversitesi Tıp Fakültesi Dergisi 45 3 243–249.
IEEE D. Gök Yurtseven, Z. Minbay, ve Ö. Eyigör, “Nesfatin-1 ve Oreksin A Nöronları Arasındaki Etkileşimin İmmünohistokimyasal Olarak Araştırılması”, Uludağ Tıp Derg, c. 45, sy. 3, ss. 243–249, 2019, doi: 10.32708/uutfd.596512.
ISNAD Gök Yurtseven, Duygu vd. “Nesfatin-1 Ve Oreksin A Nöronları Arasındaki Etkileşimin İmmünohistokimyasal Olarak Araştırılması”. Uludağ Üniversitesi Tıp Fakültesi Dergisi 45/3 (Aralık 2019), 243-249. https://doi.org/10.32708/uutfd.596512.
JAMA Gök Yurtseven D, Minbay Z, Eyigör Ö. Nesfatin-1 ve Oreksin A Nöronları Arasındaki Etkileşimin İmmünohistokimyasal Olarak Araştırılması. Uludağ Tıp Derg. 2019;45:243–249.
MLA Gök Yurtseven, Duygu vd. “Nesfatin-1 Ve Oreksin A Nöronları Arasındaki Etkileşimin İmmünohistokimyasal Olarak Araştırılması”. Uludağ Üniversitesi Tıp Fakültesi Dergisi, c. 45, sy. 3, 2019, ss. 243-9, doi:10.32708/uutfd.596512.
Vancouver Gök Yurtseven D, Minbay Z, Eyigör Ö. Nesfatin-1 ve Oreksin A Nöronları Arasındaki Etkileşimin İmmünohistokimyasal Olarak Araştırılması. Uludağ Tıp Derg. 2019;45(3):243-9.

ISSN: 1300-414X, e-ISSN: 2645-9027

Uludağ Üniversitesi Tıp Fakültesi Dergisi "Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License" ile lisanslanmaktadır.


Creative Commons License
Journal of Uludag University Medical Faculty is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

2023