Research Article
BibTex RIS Cite

Heat stress, intestinal barrier disruption and calves: multidisciplinary perspective field study

Year 2021, , 265 - 269, 31.12.2021
https://doi.org/10.31797/vetbio.1004746

Abstract

Intestinal barrier might be deteriorated by heat stress (hs) that is important disruption factor affected animal productivity, as resulted leaky gut in cattle. Therefore, the aim of this study is to demonstrate that the intestinal barrier is disrupted by hs detected by the zonulin, as an intestinal permeability biomarker. The study was conducted in local farm in the Aydın Province of Turkey in August that had the average highest temperature [41.10C (36-440C)] with %36 humidity recorded by the meteorological data. Further, serum zonulin levels were assessed by ELISA. Serum zonulin (ng/ml) levels increased (60,07 ± 21,20) at mid night 00.00 am in contrast to mid-day values at 12.00 pm (34,60 ± 10,90) (p=0,018). Regarding increased zonulin levels indicated that distrupted intestinal barrier with increasing intestinal permeability and it might be affected to reduced productivity of lactation cattle with hs during hotter summer months in Aegon Region in Turkey. Therefore, preventive measures should be taken reflected to hs.

References

  • Baccari F, Johnson HD, Hahn GL. Environmental heat effects on growth, plasma T3, and postheat compensatory effects on Holstein calves. Proceedings of the Society for Experimental Biology and Medicine. 1983;173(3):312.
  • Beede DK, Collier RJ. Potential nutritional strategies for intensively managed cattle during thermal stress. Journal of Animal Science. 1986;62(2):543–54..
  • Chebel, R. C., Santos, J. E., Reynolds, J. P., Cerri, R. L., Juchem, S. O., & Overton, M. (2004). Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. Animal Reproduction Science, 84(3-4), 239-255.
  • Colditz PJ, Kellaway RC. (1972). The effect of diet and heat stress on feed intake, growth, and nitrogen metabolism in Friesian, F1 Brahman × Friesian, and Brahman heifers. Australian Journal of Agricultural Research. 23(4), 717–25.
  • Demirhan, S. A., & Şahinler, N. (2019). Effects of global warming on animal breeding. International Journal of Agriculture Forestry and Life Sciences, 3(1), 157-160.
  • Ertugrul, M., Varol, T., Ozel, H. B., Cetin, M., & Sevik, H. (2021). Influence of climatic factor of changes in forest fire danger and fire season length in Turkey. Environmental monitoring and assessment, 193(1), 1-17.
  • Fabris, T. F., Laporta, J., Skibiel, A. L., Dado-Senn, B., Wohlgemuth, S. E., & Dahl, G. E. (2020). Effect of heat stress during the early and late dry period on mammary gland development of Holstein dairy cattle. Journal of Dairy Science, 103(9), 8576-8586.
  • Gernand, E., König, S., & Kipp, C. (2019). Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health. Journal of dairy science, 102(7), 6660-6671.
  • Gupta, A., Chauhan, N. R., Chowdhury, D., Singh, A., Meena, R. C., Chakrabarti, A., & Singh, S. B. (2017). Heat stress modulated gastrointestinal barrier dysfunction: role of tight junctions and heat shock proteins. Scandinavian Journal of Gastroenterology, 52(12), 1315-1319.
  • Hall, D. M., Buettner, G. R., Oberley, L. W., Xu, L., Matthes, R. D., & Gisolfi, C. V. (2001). Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. American Journal of Physiology-Heart and Circulatory Physiology, 280(2), H509-H521.
  • Koch, F., Thom, U., Albrecht, E., Weikard, R., Nolte, W., Kuhla, B., & Kuehn, C. (2019). Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proceedings of the National Academy of Sciences, 116(21), 10333-10338.
  • Koch, F., Thom, U., Albrecht, E., Weikard, R., Nolte, W., Kuhla, B., & Kuehn, C. (2019). Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proceedings of the National Academy of Sciences, 116(21), 10333-10338.
  • Lambert, G. P. (2009). Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. Journal of Animal Science, 87(suppl_14), E101-E108.
  • Pearce SC, Mani V, Boddicker RL, Johnson JS, Weber TE, Ross JW, et al. (2013) Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLOS One 8(8): e70215.
  • Pearce SC, Mani V, Boddicker RL, Johnson JS, Weber TE, Ross JW, & Gabler, N. K. (2013). Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLOS One 8(8): e70215.
  • Place NT, Heinrichs AJ, Erb HN. (1998). The effects of disease, management, and nutrition on average daily gain of dairy heifers from birth to four months. Journal of Dairy Science. 81(4), 0–1009.
  • Rauba J, Heins BJ, Chesterjones H, Diaz HL, Ziegler D, Linn JG, et al. Relationships between protein and energy consumed from milk replacer and starter and calf growth and first-lactation production of Holstein dairy cows. Journal of Dairy Science. 2019;102(1):301–10.
  • Serdar, D. (2018). Determination of starting level of heat stress on daily milk yield in Holstein cows in Bursa city of Turkey. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65(2), 193-198.
  • Schüller, L. K., Burfeind, O., & Heuwieser, W. (2014). Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature–humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology, 81(8), 1050-1057.
  • Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., & Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427(6972), 332-336.
  • Stott GH, Wiersma F. (1976). Influence of environment on passive immunity in calves. Journal of Dairy Science. 59(7),1306–11.
  • Tao, S., Rivas, R. M. O., Marins, T. N., Chen, Y. C., Gao, J., & Bernard, J. K. (2020). Impact of heat stress on lactational performance of dairy cows. Theriogenology, 150, 437-444.
  • Turner JR (2006) Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. The American journal of pathology. 169: 1901–1909.
  • Qi, H., Wang, P., Liu, C., Li, M., Wang, S., Huang, Y., & Wang, F. (2011). Involvement of HIF-1α in MLCK-dependent endothelial barrier dysfunction in hypoxia. Cellular Physiology and Biochemistry, 27(3-4), 251-262.
  • Wang, J., Li, J., Wang, F. Xiao, J., Wang, Y., Yang, H., ... & Cao, Z. (2020). Heat stress on calves and heifers: A review. Journal of Animal Science and Biotechnology, 11(1), 1-8.
  • West JW. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science. 86(6), 2131–44.
  • Yamagata K, Tagami M, Takenaga F, Yamori Y, Itoh S (2004). Hypoxia-induced changes in tight junction permeability of brain capillary endothelial cells are associated with IL-1beta and nitric oxide. Neurobiology of disease. 17: 491–499.

Sıcaklık stresi, bağırsak bariyerinin bozulması ve buzağılar: saha çalışmasına multidisipliner bakış

Year 2021, , 265 - 269, 31.12.2021
https://doi.org/10.31797/vetbio.1004746

Abstract

Sığırlarda sızıntılı bağırsağa neden olarak hayvan sağlığını olumsuz etkileyen en önemli faktör olan sıcaklık stresi (hs) ile bağırsak bütünlüğü bozulabilmektedir. Bu sebeple bu araştırmanın amacı, bağırsak geçirgenlik belirteci olan zonulin ile hs’ nin bağırsak bariyer bütünlüğünü bozduğunun gösterilmesidir. Çalışma meteorolojik rapora göre en yüksek sıcaklık [41.10C (36-440C)] ile %36 nem oranının ölçüldüğü Ağustos ayında, Türkiye’ nin Aydın İli’ nde gerçekleştirildi. Beraberinde serum zonulin seviyesi ELISA metodu ile değerlendirildi. Serum zonulin seviyesi (ng/ml) günortası 12.00 pm değeri (34,60 ± 10,90) ile karşılaştırıldığında gece yarısı 00.00 am’ de (60,07 ± 21,20) artış gösterdi (p=0,018). Artan zonulin seviyelerine göre artan bağırsak geçirgenliği ile bağırsak bariyer bütünlüğünün bozulduğu ve hs’ nin Türkiye’ de Ege Bölgesi’ nde en sıcak yaz aylarında laktasyon sığırlarında verimin azalmasına neden olarak etkileyebileceği görüldü. Bu sebeple alınan tedbirler mutlaka hs’ ni yansıtmalıdır.

References

  • Baccari F, Johnson HD, Hahn GL. Environmental heat effects on growth, plasma T3, and postheat compensatory effects on Holstein calves. Proceedings of the Society for Experimental Biology and Medicine. 1983;173(3):312.
  • Beede DK, Collier RJ. Potential nutritional strategies for intensively managed cattle during thermal stress. Journal of Animal Science. 1986;62(2):543–54..
  • Chebel, R. C., Santos, J. E., Reynolds, J. P., Cerri, R. L., Juchem, S. O., & Overton, M. (2004). Factors affecting conception rate after artificial insemination and pregnancy loss in lactating dairy cows. Animal Reproduction Science, 84(3-4), 239-255.
  • Colditz PJ, Kellaway RC. (1972). The effect of diet and heat stress on feed intake, growth, and nitrogen metabolism in Friesian, F1 Brahman × Friesian, and Brahman heifers. Australian Journal of Agricultural Research. 23(4), 717–25.
  • Demirhan, S. A., & Şahinler, N. (2019). Effects of global warming on animal breeding. International Journal of Agriculture Forestry and Life Sciences, 3(1), 157-160.
  • Ertugrul, M., Varol, T., Ozel, H. B., Cetin, M., & Sevik, H. (2021). Influence of climatic factor of changes in forest fire danger and fire season length in Turkey. Environmental monitoring and assessment, 193(1), 1-17.
  • Fabris, T. F., Laporta, J., Skibiel, A. L., Dado-Senn, B., Wohlgemuth, S. E., & Dahl, G. E. (2020). Effect of heat stress during the early and late dry period on mammary gland development of Holstein dairy cattle. Journal of Dairy Science, 103(9), 8576-8586.
  • Gernand, E., König, S., & Kipp, C. (2019). Influence of on-farm measurements for heat stress indicators on dairy cow productivity, female fertility, and health. Journal of dairy science, 102(7), 6660-6671.
  • Gupta, A., Chauhan, N. R., Chowdhury, D., Singh, A., Meena, R. C., Chakrabarti, A., & Singh, S. B. (2017). Heat stress modulated gastrointestinal barrier dysfunction: role of tight junctions and heat shock proteins. Scandinavian Journal of Gastroenterology, 52(12), 1315-1319.
  • Hall, D. M., Buettner, G. R., Oberley, L. W., Xu, L., Matthes, R. D., & Gisolfi, C. V. (2001). Mechanisms of circulatory and intestinal barrier dysfunction during whole body hyperthermia. American Journal of Physiology-Heart and Circulatory Physiology, 280(2), H509-H521.
  • Koch, F., Thom, U., Albrecht, E., Weikard, R., Nolte, W., Kuhla, B., & Kuehn, C. (2019). Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proceedings of the National Academy of Sciences, 116(21), 10333-10338.
  • Koch, F., Thom, U., Albrecht, E., Weikard, R., Nolte, W., Kuhla, B., & Kuehn, C. (2019). Heat stress directly impairs gut integrity and recruits distinct immune cell populations into the bovine intestine. Proceedings of the National Academy of Sciences, 116(21), 10333-10338.
  • Lambert, G. P. (2009). Stress-induced gastrointestinal barrier dysfunction and its inflammatory effects. Journal of Animal Science, 87(suppl_14), E101-E108.
  • Pearce SC, Mani V, Boddicker RL, Johnson JS, Weber TE, Ross JW, et al. (2013) Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLOS One 8(8): e70215.
  • Pearce SC, Mani V, Boddicker RL, Johnson JS, Weber TE, Ross JW, & Gabler, N. K. (2013). Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLOS One 8(8): e70215.
  • Place NT, Heinrichs AJ, Erb HN. (1998). The effects of disease, management, and nutrition on average daily gain of dairy heifers from birth to four months. Journal of Dairy Science. 81(4), 0–1009.
  • Rauba J, Heins BJ, Chesterjones H, Diaz HL, Ziegler D, Linn JG, et al. Relationships between protein and energy consumed from milk replacer and starter and calf growth and first-lactation production of Holstein dairy cows. Journal of Dairy Science. 2019;102(1):301–10.
  • Serdar, D. (2018). Determination of starting level of heat stress on daily milk yield in Holstein cows in Bursa city of Turkey. Ankara Üniversitesi Veteriner Fakültesi Dergisi, 65(2), 193-198.
  • Schüller, L. K., Burfeind, O., & Heuwieser, W. (2014). Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature–humidity index thresholds, periods relative to breeding, and heat load indices. Theriogenology, 81(8), 1050-1057.
  • Schär, C., Vidale, P. L., Lüthi, D., Frei, C., Häberli, C., Liniger, M. A., & Appenzeller, C. (2004). The role of increasing temperature variability in European summer heatwaves. Nature, 427(6972), 332-336.
  • Stott GH, Wiersma F. (1976). Influence of environment on passive immunity in calves. Journal of Dairy Science. 59(7),1306–11.
  • Tao, S., Rivas, R. M. O., Marins, T. N., Chen, Y. C., Gao, J., & Bernard, J. K. (2020). Impact of heat stress on lactational performance of dairy cows. Theriogenology, 150, 437-444.
  • Turner JR (2006) Molecular basis of epithelial barrier regulation: from basic mechanisms to clinical application. The American journal of pathology. 169: 1901–1909.
  • Qi, H., Wang, P., Liu, C., Li, M., Wang, S., Huang, Y., & Wang, F. (2011). Involvement of HIF-1α in MLCK-dependent endothelial barrier dysfunction in hypoxia. Cellular Physiology and Biochemistry, 27(3-4), 251-262.
  • Wang, J., Li, J., Wang, F. Xiao, J., Wang, Y., Yang, H., ... & Cao, Z. (2020). Heat stress on calves and heifers: A review. Journal of Animal Science and Biotechnology, 11(1), 1-8.
  • West JW. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science. 86(6), 2131–44.
  • Yamagata K, Tagami M, Takenaga F, Yamori Y, Itoh S (2004). Hypoxia-induced changes in tight junction permeability of brain capillary endothelial cells are associated with IL-1beta and nitric oxide. Neurobiology of disease. 17: 491–499.
There are 27 citations in total.

Details

Primary Language English
Subjects Veterinary Surgery
Journal Section Research Articles
Authors

Deniz Alıç Ural 0000-0002-2659-3495

Songül Erdoğan 0000-0002-7833-5519

Hasan Erdoğan 0000-0001-5141-5108

Kerem Ural 0000-0003-1867-7143

Publication Date December 31, 2021
Submission Date October 5, 2021
Acceptance Date December 9, 2021
Published in Issue Year 2021

Cite

APA Alıç Ural, D., Erdoğan, S., Erdoğan, H., Ural, K. (2021). Heat stress, intestinal barrier disruption and calves: multidisciplinary perspective field study. Journal of Advances in VetBio Science and Techniques, 6(3), 265-269. https://doi.org/10.31797/vetbio.1004746

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download