Review
BibTex RIS Cite

Three-dimensional printing applications in veterinary surgery

Year 2022, Volume: 7 Issue: 1, 130 - 142, 30.04.2022
https://doi.org/10.31797/vetbio.983275

Abstract

Thanks to three-dimensional (3D) image structuring methods, 3D printing products have been used for many purposes in veterinary medicine in recent years. It can be used in many stages like vocational training in veterinary surgery, informing the patient before the operation, surgery planning, surgical method rehearsal, patient-specific intraoperative drilling and cutting guide, patient-specific implant, prosthesis, or orthosis production. The fact that the patient-specific model can be produced with 3D printing and its similarity to reality, the economic and minimal microbial risk makes 3D models attractive. It is inevitable that its effective use will become widespread in
Turkey with its advantages such as the advantages it provides in treatment, being economical and allowing patient-specific procedures. In this article, the potential of the use of 3D printing products in veterinary medicine and especially in veterinary surgery, the stages of 3D printing production, current applications, areas of use, current situation, and future are examined in detail. Thanks to the 3D model, the physiopathology and treatment process can be shown more clearly on the organ model to patient owners, providing great convenience to veterinarians. Veterinarians can produce any material that they can use in clinical practice with 3D printing. Apart from these basic
applications, advanced surgical planning and rehearsal procedures, production and intraoperative use of patient-specific drilling and cutting guides, production of patient-specific implants and various biomaterials, and other applications that have been studied have effective advantages in increasing the success of treatment. In case the surgical method requires a complex series of procedures and the area to be operated includes complex and intricate structures, the success of the surgery is increased by performing advanced surgical planning with 3D printing products. Thanks to this rehearsal, shortening the operation and anesthesia time, reducing the possibility of mistake and iatrogenic damage in the surgical procedure, pre-planning the materials and implants to be used according to this model, and bending the implants if necessary, giving the ideal shape before the operation provide important advantages. It is inevitable that 3D printing will be used more widely and effectively in veterinary surgery in the near future. Studies on the use of 3D printing technology in veterinary clinical sciences, especially in veterinary surgery, will provide significant benefits and original contributions to veterinary surgery practice.

Project Number

Yok

References

  • Akbaş, G., Okan, O., & Bilgin, S. (2018). Sağlık Sektöründe Üç Boyutlu Yazıcı Uygulamaları: Güncel Durumu ve Geleceği. International Journal of 3D Printing Technologies and Digital Industry, 2(2), 88-98.
  • Altuğ, M. D., MZY. (2016). Dokularına göre tümöral oluşumlara cerrahi yaklaşımlar. Turkiye Klinikleri J Vet Sci Surg-Special Topics, 2(2), 70-79.
  • Altuğ, M. E., Deveci, M. Z. Y., İşler, C. T., Yurtal, Z., & Gönenci, R. (2015). Mustafa Kemal Üniversitesi Veteriner Fakültesi Cerrahi Kliniği’ne getirilen ortopedi olgularının genel değerlendirilmesi: 564 olgu (2009-2014). Harran Üniversitesi Veteriner Fakültesi Dergisi, 6(2), 158-162.
  • Altuğ, M. E., İşler, C. T., Şahin, B. (2015). Bir Caretta caretta deniz kaplumbağada mandibula ve maxilla defektinin 3D çene protezi ile rekonstrüksiyonu (Dünyada ilk olgu). 3. Veteriner Ortopedi Travmatoloji Kongresi, Ankara, Türkiye.
  • Arslan, N., Yaylacı, B., Eyüpoğlu, N., & Kürtüncü, M. (2018). Sağlıkta gelişen teknoloji: üç boyutlu yazıcılar. International Journal of 3D Printing Technologies and Digital Industry, 2(2), 99-110.
  • Blake, C., Birch, S., & Brandão, J. (2019). Medical three-dimensional printing in zoological medicine. Veterinary Clinics: Exotic Animal Practice, 22(3), 331-348 . Bordelo, J., Dias, M. I., Cardoso, L. M., Requicha, J. M., Viegas, C. A., & Bardet, J. F. (2018). A 3D printed model for radius curvus surgical treatment planning in a dog. Pesquisa Veterinária Brasileira, 38(6), 1178-1183.
  • Bose, S., Traxel, K. D., Vu, A. A., & Bandyopadhyay, A. (2019). Clinical significance of three-dimensional printed biomaterials and biomedical devices. MRS bulletin, 44(6), 494-504.
  • Carrel, J. P., Wiskott, A., Scherrer, S., & Durual, S. (2016). Large bone vertical augmentation using a three‐dimensional printed TCP/HA bone graft: A pilot study in dog mandible. Clinical implant dentistry and related research, 18(6), 1183-1192.
  • Castilho, M., Rodrigues, J., Vorndran, E., Gbureck, U., Quental, C., Folgado, J., & Fernandes, P. R. (2017). Computational design and fabrication of a novel bioresorbable cage for tibial tuberosity advancement application. Journal of the mechanical behavior of biomedical materials, 65, 344-355.
  • Crosse, K., & Worth, A. (2010). Computer-assisted surgical correction of an antebrachial deformity in a dog. Veterinary and Comparative Orthopaedics and Traumatology, 23(05), 354-361.
  • De Armond, C. C., Kim, S. E., Lewis, D. D., Biedryzcki, A. H., Banks, S. A., Cook, J. L., & Keister, J. D. (2021). Three-dimensional-printed custom guides for bipolar coxofemoral osteochondral allograft in dogs. Plos one, 16(2), e0244208.
  • Demirkan, İ., Görücü, F., & Demirkan, A. (2018). Veteriner Jinekolojide Manyetik Rezonans Ve Bilgisayarlı Tomografi Görüntüleme Rutinleşti Mi? Turkiye Klinikleri Journal of Veterinary Sciences-Obstetrics and Gynecology-Special Topics, 4(1), 62-66.
  • Deveci, M. Z. Y., Kırgız, Ö., İşler, C. T., Yurtal, Z., Altuğ, M. E., & Gönenci, R. (2020). Kedi ve Köpeklerde Göz ve Göz Kapağı Hastalıklarının Prevalansı: 201 Olguda Retrospektif Çalışma (2015-2019). Fırat University Veterinary Journal of Health Sciences, 34(3), 173-177.
  • Dismukes, D. I., Fox, D. B., Tomlinson, J. L., & Essman, S. C. (2008). Use of radiographic measures and three-dimensional computed tomographic imaging in surgical correction of an antebrachial deformity in a dog. Journal of the American Veterinary Medical Association, 232(1), 68-73.
  • Dorbandt, D. M., Joslyn, S. K., & Hamor, R. E. (2017). Three‐dimensional printing of orbital and peri‐orbital masses in three dogs and its potential applications in veterinary ophthalmology. Veterinary ophthalmology, 20(1), 58-64.
  • Dundie, A., Hayes, G., Scrivani, P., Campoy, L., Fletcher, D., Ash, K., . . . Moïse, N. (2017). Use of 3D printer technology to facilitate surgical correction of a complex vascular anomaly with esophageal entrapment in a dog. Journal of Veterinary cardiology, 19(2), 196-204.
  • Emre, Ş., Yolcu, M. B., & Celayir, S. (2015). Üç boyutlu yazıcılar ve çocuk cerrahisi. Çocuk Cerrahisi Dergisi, 29(3), 77-82.
  • Gutmann, S., Winkler, D., Müller, M., Möbius, R., Fischer, J. P., Böttcher, P., . . . Flegel, T. (2020). Accuracy of a magnetic resonance imaging‐based 3D printed stereotactic brain biopsy device in dogs. Journal of veterinary internal medicine, 34(2), 844-851.
  • Hamilton‐Bennett, S. E., Oxley, B., & Behr, S. (2018). Accuracy of a patient‐specific 3D printed drill guide for placement of cervical transpedicular screws. Veterinary Surgery, 47(2), 236-242.
  • Harrysson, O. L., Cormier, D. R., Marcellin‐Little, D. J., & Jajal, K. (2003). Rapid prototyping for treatment of canine limb deformities. Rapid Prototyping Journal.
  • Harrysson, O. L., Marcellin-Little, D. J., & Horn, T. J. (2015). Applications of metal additive manufacturing in veterinary orthopedic surgery. Jom, 67(3), 647-654.
  • Hespel, A. M. (2015). 3D printers their clinical, experimental, and teaching uses.
  • Hespel, A. M. (2018). Three-dimensional printing role in neurologic disease. Veterinary Clinics: Small Animal Practice, 48(1), 221-229.
  • Hespel, A. M., Wilhite, R., & Hudson, J. (2014). Invited review‐applications for 3d printers in veterinary medicine. Veterinary Radiology & Ultrasound, 55(4), 347-358.
  • İşler, C. T., Altuğ, M. E., Deveci, M. Z. Y., Gönenci, R., & Yurtal, Z. (2015). Mustafa Kemal Üniversitesi Veteriner Fakültesi cerrahi kliniği’ne getirilen olguların değerlendirilmesi, 1293 olgu (2009-2013).
  • Jamieson, C. D., Keenan, P., Kirkwood, D. A., Oji, S., Webster, C., Russell, K. A., & Koch, T. G. (2021). A review of recent advances in 3d bioprinting with an eye on future regenerative therapies in veterinary medicine. Frontiers in veterinary science, 7, 947.
  • Kim, S. E., Shim, K. M., Jang, K., Shim, J.-H., & Kang, S. S. (2018). Three-dimensional printing-based reconstruction of a maxillary bone defect in a dog following tumor removal. in vivo, 32(1), 63-70.
  • Kuipers von Lande, R. G., Worth, A. J., Peckitt, N. S., Cave, N. J., & Tang, L. (2012). Rapid prototype modeling and customized titanium plate fabrication for correction of a persistent hard palate defect in a dog. Journal of the American Veterinary Medical Association, 240(11), 1316-1322.
  • Lam, G., & Kim, S.-Y. (2018). Three-Dimensional Computer-Assisted Surgical Planning and Use of Three-Dimensional Printing in the Repair of a Complex Articular Femoral Fracture in a Dog. VCOT Open, 1(01), e12-e18.
  • Lee, J. W., Chu, S. G., Kim, H. T., Choi, K. Y., Oh, E. J., Shim, J.-H., . . . Kang, S. S. (2017). Osteogenesis of adipose-derived and bone marrow stem cells with polycaprolactone/tricalcium phosphate and three-dimensional printing technology in a dog model of maxillary bone defects. Polymers, 9(9), 450.
  • Li, F., Liu, C., Song, X., Huan, Y., Gao, S., & Jiang, Z. (2018). Production of accurate skeletal models of domestic animals using three‐dimensional scanning and printing technology. Anatomical sciences education, 11(1), 73-80.
  • Li, X., Cai, H., Cui, X., Cao, P., Zhang, J., Li, G., & Zhang, J. (2014). Prevention of late postpneumonectomy complications using a 3D printed lung in dog models. European Journal of Cardio-Thoracic Surgery, 46(5), e67-e73.
  • Liska, W. D., Marcellin-Little, D. J., Eskelinen, E. V., Sidebotham, C. G., Harrysson, O. L., & Hielm-Björkman, A. K. (2007). Custom total knee replacement in a dog with femoral condylar bone loss. Veterinary Surgery, 36(4), 293-301.
  • Marcellin-Little, D. J., Cansizoglu, O., Harrysson, O. L., & Roe, S. C. (2010). In vitro evaluation of a low-modulus mesh canine prosthetic hip stem. American journal of veterinary research, 71(9), 1089-1095.
  • Marcellin-Little, D. J., Harrysson, O. L., & Cansizoglu, O. (2008). In vitro evaluation of a custom cutting jig and custom plate for canine tibial plateau leveling. American journal of veterinary research, 69(7), 961-966.
  • Martin, T. W., Boss, M.-K., LaRue, S. M., & Leary, D. (2020). 3D-printed bolus improves dose distribution for veterinary patients treated with photon beam radiation therapy. The Canadian Veterinary Journal, 61(6), 638.
  • Mejia, S., Stewart, N., Miller, A., Savicky, R., Monarski, C., Moore, G. E., & Keith, D. (2019). Accuracy of external measurements of 3-dimensional (3D) printed biomodels of the canine radius used in an in-hospital setting. Canadian Journal of Veterinary Research, 83(3), 181-186.
  • Nibblett, B. M. D., Pereira, M. M., Sithole, F., Orchard, P. A., & Bauman, E. B. (2017). Design and validation of a three-dimensional printed flexible canine otoscopy teaching model. Simulation in Healthcare, 12(2), 91.
  • Oxley, B. (2017). Bilateral shoulder arthrodesis in a Pekinese using three-dimensional printed patient-specific osteotomy and reduction guides. Veterinary and Comparative Orthopaedics and Traumatology, 30(03), 230-236.
  • Oxley, B. (2018). A 3‐dimensional‐printed patient‐specific guide system for minimally invasive plate osteosynthesis of a comminuted mid‐diaphyseal humeral fracture in a cat. Veterinary Surgery, 47(3), 445-453.
  • Park, S. A., Lee, H.-J., Kim, K.-S., Lee, S. J., Lee, J.-T., Kim, S.-Y., . . . Park, S.-Y. (2018). In vivo evaluation of 3D-printed polycaprolactone scaffold implantation combined with β-TCP powder for alveolar bone augmentation in a beagle defect model. Materials, 11(2), 238.
  • Petazzoni, M., & Nicetto, T. (2014). Rapid prototyping to design a customized locking plate for pancarpal arthrodesis in a giant breed dog. Veterinary and Comparative Orthopaedics and Traumatology, 27(01), 85-89.
  • Popov, V. V., Muller-Kamskii, G., Katz-Demyanetz, A., Kovalevsky, A., Usov, S., Trofimcow, D., . . . Koptyug, A. (2019). Additive manufacturing to veterinary practice: recovery of bony defects after the osteosarcoma resection in canines. Biomedical engineering letters, 9(1), 97-108.
  • Schöllhorn, B., Bürki, A., Stahl, C., Howard, J., & Forterre, F. (2013). Comparison of the biomechanical properties of a ventral cervical intervertebral anchored fusion device with locking plate fixation applied to cadaveric canine cervical spines. Veterinary Surgery, 42(7), 825-831.
  • Kinns, J., Malinowski, R., McEvoy, F., Schwarz, T., & Zwingenberger, A. (2011). Special Software Applications. In T. Schwarz & J. Saunders (Eds.), Veterinary computed tomography (pp. 67-74). John Wiley & Sons. https://doi.org/10.1002/9781118785676.ch6
  • Sen, İ. (2020). Ampute Bir Köpekte 3 Boyutlu Yazıcı ile Üretilen Protezin Kullanımının Klinik Sonuçları. 2 Uluslararası 30 Ağustos Bilimsel Araştırmalar Kongresi, Online.
  • Shim, J.-H., Yoon, M.-C., Jeong, C.-M., Jang, J., Jeong, S.-I., Cho, D.-W., & Huh, J.-B. (2014). Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit. Biomedical materials, 9(6), 065006.
  • Sjöholm, E., Mathiyalagan, R., Rajan Prakash, D., Lindfors, L., Wang, Q., Wang, X., . . . Sandler, N. (2020). 3D-Printed Veterinary Dosage Forms—A Comparative Study of Three Semi-Solid Extrusion 3D Printers. Pharmaceutics, 12(12), 1239.
  • Soares, C. S., Barros, L. C., Saraiva, V., Gomez-Florit, M., Babo, P. S., Dias, I. R., . . . Gomes, M. E. (2018). Bioengineered surgical repair of a chronic oronasal fistula in a cat using autologous platelet-rich fibrin and bone marrow with a tailored 3D printed implant. Journal of feline medicine and surgery, 20(9), 835-843.
  • Southerden, P., & Barnes, D. M. (2018). Caudal mandibular fracture repair using three-dimensional printing, presurgical plate contouring and a preformed template to aid anatomical fracture reduction. Journal of Feline Medicine and Surgery Open Reports, 4(2), 2055116918798875.
  • Sparrow, T., Fitzpatrick, N., Meswania, J., & Blunn, G. (2014). Shoulder joint hemiarthroplasty for treatment of a severe osteochondritis dissecans lesion in a dog. Veterinary and Comparative Orthopaedics and Traumatology, 27(03), 243-248.
  • Suñol, A., Aige, V., Morales, C., López-Beltran, M., Feliu-Pascual, A. L., & Puig, J. (2018). Use of three-dimensional printing models for veterinary medical education: impact on learning how to identify canine vertebral fractures. Journal of veterinary medical education, 46(4), 523-532.
  • Toni, C., Oxley, B., Clarke, S., & Behr, S. (2020). Accuracy of placement of pedicle screws in the lumbosacral region of dogs using 3D-printed patient-specific drill guides. Veterinary and Comparative Orthopaedics and Traumatology, 34(01), 053-058.
  • van Duijl, J., Winer, J., De Rooster, H., & Arzi, B. (2018). Peripheral osteoma of the mandible in a cat. Vlaams Diergeneeskundig Tijdschrift, 87(2), 93-98.
  • Winer, J. N., Verstraete, F. J., Cissell, D. D., Lucero, S., Athanasiou, K. A., & Arzi, B. (2017). The application of 3‐dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats. Veterinary Surgery, 46(7), 942-951.
  • Witowski, J. S., Coles-Black, J., Zuzak, T. Z., Pędziwiatr, M., Chuen, J., Major, P., & Budzyński, A. (2017). 3D printing in liver surgery: a systematic review. Telemedicine and e-Health, 23(12), 943-947.
  • Worth, A. J., Crosse, K. R., & Kersley, A. (2019). Computer-assisted surgery using 3D printed saw guides for acute correction of antebrachial angular limb deformities in dogs. Veterinary and Comparative Orthopaedics and Traumatology, 32(03), 241-249.
  • Zanfabro, M., Radice, M., Brusati, M., & Quintavalla, F. (2021). Monolateral temporomandibular joint ankylosis treated with piezoelectric surgery employing 3D printed pre‐operative surgical planning model in cat. Veterinary Record Case Reports, e156.
Year 2022, Volume: 7 Issue: 1, 130 - 142, 30.04.2022
https://doi.org/10.31797/vetbio.983275

Abstract

Supporting Institution

Yok

Project Number

Yok

References

  • Akbaş, G., Okan, O., & Bilgin, S. (2018). Sağlık Sektöründe Üç Boyutlu Yazıcı Uygulamaları: Güncel Durumu ve Geleceği. International Journal of 3D Printing Technologies and Digital Industry, 2(2), 88-98.
  • Altuğ, M. D., MZY. (2016). Dokularına göre tümöral oluşumlara cerrahi yaklaşımlar. Turkiye Klinikleri J Vet Sci Surg-Special Topics, 2(2), 70-79.
  • Altuğ, M. E., Deveci, M. Z. Y., İşler, C. T., Yurtal, Z., & Gönenci, R. (2015). Mustafa Kemal Üniversitesi Veteriner Fakültesi Cerrahi Kliniği’ne getirilen ortopedi olgularının genel değerlendirilmesi: 564 olgu (2009-2014). Harran Üniversitesi Veteriner Fakültesi Dergisi, 6(2), 158-162.
  • Altuğ, M. E., İşler, C. T., Şahin, B. (2015). Bir Caretta caretta deniz kaplumbağada mandibula ve maxilla defektinin 3D çene protezi ile rekonstrüksiyonu (Dünyada ilk olgu). 3. Veteriner Ortopedi Travmatoloji Kongresi, Ankara, Türkiye.
  • Arslan, N., Yaylacı, B., Eyüpoğlu, N., & Kürtüncü, M. (2018). Sağlıkta gelişen teknoloji: üç boyutlu yazıcılar. International Journal of 3D Printing Technologies and Digital Industry, 2(2), 99-110.
  • Blake, C., Birch, S., & Brandão, J. (2019). Medical three-dimensional printing in zoological medicine. Veterinary Clinics: Exotic Animal Practice, 22(3), 331-348 . Bordelo, J., Dias, M. I., Cardoso, L. M., Requicha, J. M., Viegas, C. A., & Bardet, J. F. (2018). A 3D printed model for radius curvus surgical treatment planning in a dog. Pesquisa Veterinária Brasileira, 38(6), 1178-1183.
  • Bose, S., Traxel, K. D., Vu, A. A., & Bandyopadhyay, A. (2019). Clinical significance of three-dimensional printed biomaterials and biomedical devices. MRS bulletin, 44(6), 494-504.
  • Carrel, J. P., Wiskott, A., Scherrer, S., & Durual, S. (2016). Large bone vertical augmentation using a three‐dimensional printed TCP/HA bone graft: A pilot study in dog mandible. Clinical implant dentistry and related research, 18(6), 1183-1192.
  • Castilho, M., Rodrigues, J., Vorndran, E., Gbureck, U., Quental, C., Folgado, J., & Fernandes, P. R. (2017). Computational design and fabrication of a novel bioresorbable cage for tibial tuberosity advancement application. Journal of the mechanical behavior of biomedical materials, 65, 344-355.
  • Crosse, K., & Worth, A. (2010). Computer-assisted surgical correction of an antebrachial deformity in a dog. Veterinary and Comparative Orthopaedics and Traumatology, 23(05), 354-361.
  • De Armond, C. C., Kim, S. E., Lewis, D. D., Biedryzcki, A. H., Banks, S. A., Cook, J. L., & Keister, J. D. (2021). Three-dimensional-printed custom guides for bipolar coxofemoral osteochondral allograft in dogs. Plos one, 16(2), e0244208.
  • Demirkan, İ., Görücü, F., & Demirkan, A. (2018). Veteriner Jinekolojide Manyetik Rezonans Ve Bilgisayarlı Tomografi Görüntüleme Rutinleşti Mi? Turkiye Klinikleri Journal of Veterinary Sciences-Obstetrics and Gynecology-Special Topics, 4(1), 62-66.
  • Deveci, M. Z. Y., Kırgız, Ö., İşler, C. T., Yurtal, Z., Altuğ, M. E., & Gönenci, R. (2020). Kedi ve Köpeklerde Göz ve Göz Kapağı Hastalıklarının Prevalansı: 201 Olguda Retrospektif Çalışma (2015-2019). Fırat University Veterinary Journal of Health Sciences, 34(3), 173-177.
  • Dismukes, D. I., Fox, D. B., Tomlinson, J. L., & Essman, S. C. (2008). Use of radiographic measures and three-dimensional computed tomographic imaging in surgical correction of an antebrachial deformity in a dog. Journal of the American Veterinary Medical Association, 232(1), 68-73.
  • Dorbandt, D. M., Joslyn, S. K., & Hamor, R. E. (2017). Three‐dimensional printing of orbital and peri‐orbital masses in three dogs and its potential applications in veterinary ophthalmology. Veterinary ophthalmology, 20(1), 58-64.
  • Dundie, A., Hayes, G., Scrivani, P., Campoy, L., Fletcher, D., Ash, K., . . . Moïse, N. (2017). Use of 3D printer technology to facilitate surgical correction of a complex vascular anomaly with esophageal entrapment in a dog. Journal of Veterinary cardiology, 19(2), 196-204.
  • Emre, Ş., Yolcu, M. B., & Celayir, S. (2015). Üç boyutlu yazıcılar ve çocuk cerrahisi. Çocuk Cerrahisi Dergisi, 29(3), 77-82.
  • Gutmann, S., Winkler, D., Müller, M., Möbius, R., Fischer, J. P., Böttcher, P., . . . Flegel, T. (2020). Accuracy of a magnetic resonance imaging‐based 3D printed stereotactic brain biopsy device in dogs. Journal of veterinary internal medicine, 34(2), 844-851.
  • Hamilton‐Bennett, S. E., Oxley, B., & Behr, S. (2018). Accuracy of a patient‐specific 3D printed drill guide for placement of cervical transpedicular screws. Veterinary Surgery, 47(2), 236-242.
  • Harrysson, O. L., Cormier, D. R., Marcellin‐Little, D. J., & Jajal, K. (2003). Rapid prototyping for treatment of canine limb deformities. Rapid Prototyping Journal.
  • Harrysson, O. L., Marcellin-Little, D. J., & Horn, T. J. (2015). Applications of metal additive manufacturing in veterinary orthopedic surgery. Jom, 67(3), 647-654.
  • Hespel, A. M. (2015). 3D printers their clinical, experimental, and teaching uses.
  • Hespel, A. M. (2018). Three-dimensional printing role in neurologic disease. Veterinary Clinics: Small Animal Practice, 48(1), 221-229.
  • Hespel, A. M., Wilhite, R., & Hudson, J. (2014). Invited review‐applications for 3d printers in veterinary medicine. Veterinary Radiology & Ultrasound, 55(4), 347-358.
  • İşler, C. T., Altuğ, M. E., Deveci, M. Z. Y., Gönenci, R., & Yurtal, Z. (2015). Mustafa Kemal Üniversitesi Veteriner Fakültesi cerrahi kliniği’ne getirilen olguların değerlendirilmesi, 1293 olgu (2009-2013).
  • Jamieson, C. D., Keenan, P., Kirkwood, D. A., Oji, S., Webster, C., Russell, K. A., & Koch, T. G. (2021). A review of recent advances in 3d bioprinting with an eye on future regenerative therapies in veterinary medicine. Frontiers in veterinary science, 7, 947.
  • Kim, S. E., Shim, K. M., Jang, K., Shim, J.-H., & Kang, S. S. (2018). Three-dimensional printing-based reconstruction of a maxillary bone defect in a dog following tumor removal. in vivo, 32(1), 63-70.
  • Kuipers von Lande, R. G., Worth, A. J., Peckitt, N. S., Cave, N. J., & Tang, L. (2012). Rapid prototype modeling and customized titanium plate fabrication for correction of a persistent hard palate defect in a dog. Journal of the American Veterinary Medical Association, 240(11), 1316-1322.
  • Lam, G., & Kim, S.-Y. (2018). Three-Dimensional Computer-Assisted Surgical Planning and Use of Three-Dimensional Printing in the Repair of a Complex Articular Femoral Fracture in a Dog. VCOT Open, 1(01), e12-e18.
  • Lee, J. W., Chu, S. G., Kim, H. T., Choi, K. Y., Oh, E. J., Shim, J.-H., . . . Kang, S. S. (2017). Osteogenesis of adipose-derived and bone marrow stem cells with polycaprolactone/tricalcium phosphate and three-dimensional printing technology in a dog model of maxillary bone defects. Polymers, 9(9), 450.
  • Li, F., Liu, C., Song, X., Huan, Y., Gao, S., & Jiang, Z. (2018). Production of accurate skeletal models of domestic animals using three‐dimensional scanning and printing technology. Anatomical sciences education, 11(1), 73-80.
  • Li, X., Cai, H., Cui, X., Cao, P., Zhang, J., Li, G., & Zhang, J. (2014). Prevention of late postpneumonectomy complications using a 3D printed lung in dog models. European Journal of Cardio-Thoracic Surgery, 46(5), e67-e73.
  • Liska, W. D., Marcellin-Little, D. J., Eskelinen, E. V., Sidebotham, C. G., Harrysson, O. L., & Hielm-Björkman, A. K. (2007). Custom total knee replacement in a dog with femoral condylar bone loss. Veterinary Surgery, 36(4), 293-301.
  • Marcellin-Little, D. J., Cansizoglu, O., Harrysson, O. L., & Roe, S. C. (2010). In vitro evaluation of a low-modulus mesh canine prosthetic hip stem. American journal of veterinary research, 71(9), 1089-1095.
  • Marcellin-Little, D. J., Harrysson, O. L., & Cansizoglu, O. (2008). In vitro evaluation of a custom cutting jig and custom plate for canine tibial plateau leveling. American journal of veterinary research, 69(7), 961-966.
  • Martin, T. W., Boss, M.-K., LaRue, S. M., & Leary, D. (2020). 3D-printed bolus improves dose distribution for veterinary patients treated with photon beam radiation therapy. The Canadian Veterinary Journal, 61(6), 638.
  • Mejia, S., Stewart, N., Miller, A., Savicky, R., Monarski, C., Moore, G. E., & Keith, D. (2019). Accuracy of external measurements of 3-dimensional (3D) printed biomodels of the canine radius used in an in-hospital setting. Canadian Journal of Veterinary Research, 83(3), 181-186.
  • Nibblett, B. M. D., Pereira, M. M., Sithole, F., Orchard, P. A., & Bauman, E. B. (2017). Design and validation of a three-dimensional printed flexible canine otoscopy teaching model. Simulation in Healthcare, 12(2), 91.
  • Oxley, B. (2017). Bilateral shoulder arthrodesis in a Pekinese using three-dimensional printed patient-specific osteotomy and reduction guides. Veterinary and Comparative Orthopaedics and Traumatology, 30(03), 230-236.
  • Oxley, B. (2018). A 3‐dimensional‐printed patient‐specific guide system for minimally invasive plate osteosynthesis of a comminuted mid‐diaphyseal humeral fracture in a cat. Veterinary Surgery, 47(3), 445-453.
  • Park, S. A., Lee, H.-J., Kim, K.-S., Lee, S. J., Lee, J.-T., Kim, S.-Y., . . . Park, S.-Y. (2018). In vivo evaluation of 3D-printed polycaprolactone scaffold implantation combined with β-TCP powder for alveolar bone augmentation in a beagle defect model. Materials, 11(2), 238.
  • Petazzoni, M., & Nicetto, T. (2014). Rapid prototyping to design a customized locking plate for pancarpal arthrodesis in a giant breed dog. Veterinary and Comparative Orthopaedics and Traumatology, 27(01), 85-89.
  • Popov, V. V., Muller-Kamskii, G., Katz-Demyanetz, A., Kovalevsky, A., Usov, S., Trofimcow, D., . . . Koptyug, A. (2019). Additive manufacturing to veterinary practice: recovery of bony defects after the osteosarcoma resection in canines. Biomedical engineering letters, 9(1), 97-108.
  • Schöllhorn, B., Bürki, A., Stahl, C., Howard, J., & Forterre, F. (2013). Comparison of the biomechanical properties of a ventral cervical intervertebral anchored fusion device with locking plate fixation applied to cadaveric canine cervical spines. Veterinary Surgery, 42(7), 825-831.
  • Kinns, J., Malinowski, R., McEvoy, F., Schwarz, T., & Zwingenberger, A. (2011). Special Software Applications. In T. Schwarz & J. Saunders (Eds.), Veterinary computed tomography (pp. 67-74). John Wiley & Sons. https://doi.org/10.1002/9781118785676.ch6
  • Sen, İ. (2020). Ampute Bir Köpekte 3 Boyutlu Yazıcı ile Üretilen Protezin Kullanımının Klinik Sonuçları. 2 Uluslararası 30 Ağustos Bilimsel Araştırmalar Kongresi, Online.
  • Shim, J.-H., Yoon, M.-C., Jeong, C.-M., Jang, J., Jeong, S.-I., Cho, D.-W., & Huh, J.-B. (2014). Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit. Biomedical materials, 9(6), 065006.
  • Sjöholm, E., Mathiyalagan, R., Rajan Prakash, D., Lindfors, L., Wang, Q., Wang, X., . . . Sandler, N. (2020). 3D-Printed Veterinary Dosage Forms—A Comparative Study of Three Semi-Solid Extrusion 3D Printers. Pharmaceutics, 12(12), 1239.
  • Soares, C. S., Barros, L. C., Saraiva, V., Gomez-Florit, M., Babo, P. S., Dias, I. R., . . . Gomes, M. E. (2018). Bioengineered surgical repair of a chronic oronasal fistula in a cat using autologous platelet-rich fibrin and bone marrow with a tailored 3D printed implant. Journal of feline medicine and surgery, 20(9), 835-843.
  • Southerden, P., & Barnes, D. M. (2018). Caudal mandibular fracture repair using three-dimensional printing, presurgical plate contouring and a preformed template to aid anatomical fracture reduction. Journal of Feline Medicine and Surgery Open Reports, 4(2), 2055116918798875.
  • Sparrow, T., Fitzpatrick, N., Meswania, J., & Blunn, G. (2014). Shoulder joint hemiarthroplasty for treatment of a severe osteochondritis dissecans lesion in a dog. Veterinary and Comparative Orthopaedics and Traumatology, 27(03), 243-248.
  • Suñol, A., Aige, V., Morales, C., López-Beltran, M., Feliu-Pascual, A. L., & Puig, J. (2018). Use of three-dimensional printing models for veterinary medical education: impact on learning how to identify canine vertebral fractures. Journal of veterinary medical education, 46(4), 523-532.
  • Toni, C., Oxley, B., Clarke, S., & Behr, S. (2020). Accuracy of placement of pedicle screws in the lumbosacral region of dogs using 3D-printed patient-specific drill guides. Veterinary and Comparative Orthopaedics and Traumatology, 34(01), 053-058.
  • van Duijl, J., Winer, J., De Rooster, H., & Arzi, B. (2018). Peripheral osteoma of the mandible in a cat. Vlaams Diergeneeskundig Tijdschrift, 87(2), 93-98.
  • Winer, J. N., Verstraete, F. J., Cissell, D. D., Lucero, S., Athanasiou, K. A., & Arzi, B. (2017). The application of 3‐dimensional printing for preoperative planning in oral and maxillofacial surgery in dogs and cats. Veterinary Surgery, 46(7), 942-951.
  • Witowski, J. S., Coles-Black, J., Zuzak, T. Z., Pędziwiatr, M., Chuen, J., Major, P., & Budzyński, A. (2017). 3D printing in liver surgery: a systematic review. Telemedicine and e-Health, 23(12), 943-947.
  • Worth, A. J., Crosse, K. R., & Kersley, A. (2019). Computer-assisted surgery using 3D printed saw guides for acute correction of antebrachial angular limb deformities in dogs. Veterinary and Comparative Orthopaedics and Traumatology, 32(03), 241-249.
  • Zanfabro, M., Radice, M., Brusati, M., & Quintavalla, F. (2021). Monolateral temporomandibular joint ankylosis treated with piezoelectric surgery employing 3D printed pre‐operative surgical planning model in cat. Veterinary Record Case Reports, e156.
There are 58 citations in total.

Details

Primary Language English
Subjects Veterinary Sciences
Journal Section Erratum
Authors

Mehmet Zeki Yılmaz Deveci 0000-0002-9532-247X

Muhammed Enes Altug 0000-0003-3896-9944

Cafer Tayer İşler 0000-0002-1910-8316

Halil Alakuş 0000-0001-9265-2310

Ömer Kırgız 0000-0002-0222-1363

İbrahim Alakuş 0000-0002-2031-7035

Project Number Yok
Publication Date April 30, 2022
Submission Date August 16, 2021
Acceptance Date February 8, 2022
Published in Issue Year 2022 Volume: 7 Issue: 1

Cite

APA Deveci, M. Z. Y., Altug, M. E., İşler, C. T., Alakuş, H., et al. (2022). Three-dimensional printing applications in veterinary surgery. Journal of Advances in VetBio Science and Techniques, 7(1), 130-142. https://doi.org/10.31797/vetbio.983275

22563   CABI-Logo_NEW_accessible.jpg   logo_world_of_journals_no_margin.png  download download   download   download        download