Research Article
BibTex RIS Cite

Tuz Stresi Altındaki Mısır Bitkilerinde Eksojen Askorbik Asit Uygulamasının Etkileri

Year 2020, Volume: 30 Issue: Ek sayı (Additional issue), 919 - 927, 31.12.2020
https://doi.org/10.29133/yyutbd.724730

Abstract

Tuz stresi (50 mM NaCl) altındaki mısır (Zea mays L.) genotipinde (ADA9510) eksojen askorbik asit uygulamasının temel antioksidan enzimler, fotosentetik pigment miktarı, hidrojen peroksit ve malondialdehit üzerine etkileri araştırılmıştır. Tuz stresi klorofil a, klorofil b, toplam klorofil ve toplam karotenoid miktarı ile süperoksit dismutaz, askorbat peroksidaz ve glutatyon redüktaz aktivitesini azaltmıştır. Ancak malondialdehit ve hidrojen peroksit miktarını artırmıştır. Bu sonuçlar tuz stresinin mısır yapraklarında oksidatif strese ve fotosentetik pigmentlerin parçalanmasına neden olduğunu göstermektedir. Ancak eksojen askorbik asit uygulaması klorofil a ve toplam klorofil miktarını artırmış, antioksidan enzimlerin aktivitelerini, malondialdehit ve hidrojen peroksit miktarını azaltmıştır. Bu değişimler eksojen olarak uygulanan askorbik asidin oksidatif stresle direkt olarak etkileşime girdiğini göstermektedir. Sonuç olarak, eksojen askorbik asit uygulamasının tuz stresi altındaki mısır bitkilerinde tuz toleransını geliştirdiği söylenebilir.

References

  • Ahmad, P. & Jhon R. (2005). Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Archieves of Agronomy and Soil Science 51, 665-672.
  • Al-Aghabary, K., Zhu, Z. & Qinhua, S. (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and antioxidative enzyme activities on tomato plants under salt stress. Journal of Plant Nutrition 27, 2101-2115.
  • Anuradha, S. & Rao, S. S. R. (2003). Application of brassinosteroids in rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth and improved photosynthetic pigment levels and nitrate reductase activity. Plant Growth Regulation 40, 29-32.
  • Ashraf, M. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Science 13, 17-42.
  • Ashraf, M. (2002). Salt tolerance of cotton: some new advances. Critical Reviews in Plant Sciences 21, 1-30.
  • Ashraf, M., Athar, H. R., Harris, P. J. C., & Kwon, T. R. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy 97, 45-110.
  • Azevedo, R. A., Carvalho, R. F., Cia, M. C., & Gratao, P. L. (2011). Sugarcane under pressure: an overview of biochemical and physiological studies of abiotic stress. Tropical Plant Biology 4, 42-51.
  • Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry 161, 559-566.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.
  • Bybordi, A. (2012). Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. Journal of Integrative Agriculture 11, 1610-1620 . Cramer, G. R., & Nowak, R. S. (1992). Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiologia Plantarum 84, 600-605.
  • Cramer, G. R., Epstein, E., & Lauchli, A. (1993). Effects of sodium, potassium and calcium on salt-stresses barley. Physiologia Plantarum 80, 83-88.
  • Doğru, A. & Çakırlar, H. (2020b). Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes in winter rapeseeds leaves under cold acclimation conditions. Brazilian Journal of Botany 43, 11-20.
  • Doğru, A., & Çakırlar, H. (2020a). Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Functional Plant Biology 47, 250-262.
  • Doğru, A., & Yılmaz Kaçar, M. (2019). A preliminary study on salt tolerance of some barley genotypes. SAU Journal of Science 23, 755-762.
  • Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany 55, 307-319.
  • Franco, J. A., Esteban, C., & Rodriguez C. (1993). Effects of salinity on various growth stages of muskmelon cv. Revigal. Journal of Horticultural Science 68, 899-904.
  • Hamada, A. M. 1998. Effect of exogenously added ascorbic acid, thiamine or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. In: Proceedings of XIth International Photosynthesis Conference. Budapest, Hungary, August, pp. 17-22.
  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463-499.
  • He, T., & Cramer, G.R. (1993). Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity. Plant and Soil 139, 285-294.
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts I. Kinetic and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189-198.
  • Kafeli, V. I. (1981). Vitamins and some other representatives of non-hormonal plant growth regulators. Prible Biochemistry and Microbiology 17, 5-15.
  • Khan, A., Ahmad, M. S. A., Athar, R. E., & Ashraf, M. (2006). Interactive effect of foliarly applied ascorbic acid and salt stress on wheat (Triticum aestivum L.) at the seedling state. Pakistan Journal of Botany 38, 1407-1414.
  • Larcher, W. 1980. Physiological Plant Ecology. Springer-Verlag, Berlin.
  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods in Enzymology 148, 350-382.
  • Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypothesis. Plant Cell and Environment 16, 15-24. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell and Environment 33, 453-467.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
  • Noble, C. L., & Rogers, M. E. (1992). Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant and Soil 146, 99-107.
  • Noble, C. L., Halloran, G. M., & West, D. W. (1984). Identification and selection for salt tolerance in lucerne (Medicado sativa L.). Australian Journal of Agricultural Research 35, 239-252.
  • Ohkawa, H., Ohishi, N., & Yagi, N. Y. (1979). Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry 95, 351-358.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety 60, 324-349.
  • Saeidi-Sar, S., Abbaspour, H., Afshari, H., & Yaghoobi, S. R., (2013). Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiologia Plantarum 35, 667-677.
  • Sgherri, C. L. M., Loggini, B., Puliga, S. & Navari-Izzo, F. (1994). Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry 35, 561-565.
  • Shannon, M.C. (1998). Adaptation of plants to salinity. Advances in Agronomy 60, 75-119.
  • Siddiqui, M. H., Alamri, S. A., Al-Khaishany, Y. Y., Al-Qutami, M. A., & Ali, H. M. (2018). Ascorbic acid application improves salinity stress tolerance in wheat. Chiang Mai Journal of Science 45, 1-11.
  • Taibi, K., Taibi, F., Abderrahim, L. A., Annejah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence system in Phaseolus vulgaris L. South African Journal of Botany 105, 306-312.
  • Wang, S. Y., Jiao, H., & Faust, M. (1991). Changes in ascorbate, glutathione and related enzyme activity during thidiazuron-induced bud break of apple. Plant Physiology 82, 231-236.
  • Yeo, A. R. (1994). Physiological criteria in screening and breeding. Springer-Verlag, Berlin.
  • Zhu, J.K., 2007. Plant Salt Stress. John Wiley & Sons, Ltd.

Effects of Exogenous Ascorbic Acid Application in Maize Plants under Salt Stress

Year 2020, Volume: 30 Issue: Ek sayı (Additional issue), 919 - 927, 31.12.2020
https://doi.org/10.29133/yyutbd.724730

Abstract

The effects of the exogenous ascorbic acid application on major antioxidant enzymes, photosynthetic pigment content, malondialdehyde and hydrogen peroxide were investigated in salt-stressed (50 mM NaCl) maize genotype (ADA9510). Salt stress significantly decreased chlorophyll a, chlorophyll b, total chlorophyll and total carotenoid content and the activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase. Conversely, malondialdehyde and hydrogen peroxide contents were increased by salt stress. These results showed that salinity led to the oxidative stress and destruction of photosynthetic pigments in maize leaves. Ascorbic acid application, on the other hand, caused to the increased chlorophyll a and the total chlorophyll content, decreased level of antioxidant enzymes, malondialdehyde and hydrogen peroxide content. This kind of changes may indicate that the exogenous ascorbic acid counteract the oxidative stress directly. Thus, it may be concluded that the exogenous ascorbic acid application improves salt tolerance in maize plants under salt stress.

References

  • Ahmad, P. & Jhon R. (2005). Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Archieves of Agronomy and Soil Science 51, 665-672.
  • Al-Aghabary, K., Zhu, Z. & Qinhua, S. (2004). Influence of silicon supply on chlorophyll content, chlorophyll fluorescence and antioxidative enzyme activities on tomato plants under salt stress. Journal of Plant Nutrition 27, 2101-2115.
  • Anuradha, S. & Rao, S. S. R. (2003). Application of brassinosteroids in rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth and improved photosynthetic pigment levels and nitrate reductase activity. Plant Growth Regulation 40, 29-32.
  • Ashraf, M. (1994). Breeding for salinity tolerance in plants. Critical Reviews in Plant Science 13, 17-42.
  • Ashraf, M. (2002). Salt tolerance of cotton: some new advances. Critical Reviews in Plant Sciences 21, 1-30.
  • Ashraf, M., Athar, H. R., Harris, P. J. C., & Kwon, T. R. (2008). Some prospective strategies for improving crop salt tolerance. Advances in Agronomy 97, 45-110.
  • Azevedo, R. A., Carvalho, R. F., Cia, M. C., & Gratao, P. L. (2011). Sugarcane under pressure: an overview of biochemical and physiological studies of abiotic stress. Tropical Plant Biology 4, 42-51.
  • Beyer, W. F., & Fridovich, I. (1987). Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions. Analytical Biochemistry 161, 559-566.
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248-254.
  • Bybordi, A. (2012). Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. Journal of Integrative Agriculture 11, 1610-1620 . Cramer, G. R., & Nowak, R. S. (1992). Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiologia Plantarum 84, 600-605.
  • Cramer, G. R., Epstein, E., & Lauchli, A. (1993). Effects of sodium, potassium and calcium on salt-stresses barley. Physiologia Plantarum 80, 83-88.
  • Doğru, A. & Çakırlar, H. (2020b). Effects of leaf age on chlorophyll fluorescence and antioxidant enzymes in winter rapeseeds leaves under cold acclimation conditions. Brazilian Journal of Botany 43, 11-20.
  • Doğru, A., & Çakırlar, H. (2020a). Is leaf age a predictor for cold tolerance in winter oilseed rape plants? Functional Plant Biology 47, 250-262.
  • Doğru, A., & Yılmaz Kaçar, M. (2019). A preliminary study on salt tolerance of some barley genotypes. SAU Journal of Science 23, 755-762.
  • Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany 55, 307-319.
  • Franco, J. A., Esteban, C., & Rodriguez C. (1993). Effects of salinity on various growth stages of muskmelon cv. Revigal. Journal of Horticultural Science 68, 899-904.
  • Hamada, A. M. 1998. Effect of exogenously added ascorbic acid, thiamine or aspirin on photosynthesis and some related activities of drought-stressed wheat plants. In: Proceedings of XIth International Photosynthesis Conference. Budapest, Hungary, August, pp. 17-22.
  • Hasegawa, P. M., Bressan, R. A., Zhu, J. K., & Bohnert, H. J. (2000). Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 463-499.
  • He, T., & Cramer, G.R. (1993). Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity. Plant and Soil 139, 285-294.
  • Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts I. Kinetic and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125, 189-198.
  • Kafeli, V. I. (1981). Vitamins and some other representatives of non-hormonal plant growth regulators. Prible Biochemistry and Microbiology 17, 5-15.
  • Khan, A., Ahmad, M. S. A., Athar, R. E., & Ashraf, M. (2006). Interactive effect of foliarly applied ascorbic acid and salt stress on wheat (Triticum aestivum L.) at the seedling state. Pakistan Journal of Botany 38, 1407-1414.
  • Larcher, W. 1980. Physiological Plant Ecology. Springer-Verlag, Berlin.
  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic membranes. Methods in Enzymology 148, 350-382.
  • Munns, R. (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypothesis. Plant Cell and Environment 16, 15-24. Munns, R. (2002). Comparative physiology of salt and water stress. Plant Cell and Environment 33, 453-467.
  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681.
  • Noble, C. L., & Rogers, M. E. (1992). Arguments for the use of physiological criteria for improving the salt tolerance in crops. Plant and Soil 146, 99-107.
  • Noble, C. L., Halloran, G. M., & West, D. W. (1984). Identification and selection for salt tolerance in lucerne (Medicado sativa L.). Australian Journal of Agricultural Research 35, 239-252.
  • Ohkawa, H., Ohishi, N., & Yagi, N. Y. (1979). Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Analytical Biochemistry 95, 351-358.
  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety 60, 324-349.
  • Saeidi-Sar, S., Abbaspour, H., Afshari, H., & Yaghoobi, S. R., (2013). Effects of ascorbic acid and gibberellin A3 on alleviation of salt stress in common bean (Phaseolus vulgaris L.) seedlings. Acta Physiologia Plantarum 35, 667-677.
  • Sgherri, C. L. M., Loggini, B., Puliga, S. & Navari-Izzo, F. (1994). Antioxidant system in Sporobolus stapfianus: changes in response to desiccation and rehydration. Phytochemistry 35, 561-565.
  • Shannon, M.C. (1998). Adaptation of plants to salinity. Advances in Agronomy 60, 75-119.
  • Siddiqui, M. H., Alamri, S. A., Al-Khaishany, Y. Y., Al-Qutami, M. A., & Ali, H. M. (2018). Ascorbic acid application improves salinity stress tolerance in wheat. Chiang Mai Journal of Science 45, 1-11.
  • Taibi, K., Taibi, F., Abderrahim, L. A., Annejah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence system in Phaseolus vulgaris L. South African Journal of Botany 105, 306-312.
  • Wang, S. Y., Jiao, H., & Faust, M. (1991). Changes in ascorbate, glutathione and related enzyme activity during thidiazuron-induced bud break of apple. Plant Physiology 82, 231-236.
  • Yeo, A. R. (1994). Physiological criteria in screening and breeding. Springer-Verlag, Berlin.
  • Zhu, J.K., 2007. Plant Salt Stress. John Wiley & Sons, Ltd.
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Articles
Authors

Ali Doğru 0000-0003-0060-4691

Ebru Torlak 0000-0002-9871-0072

Publication Date December 31, 2020
Acceptance Date November 4, 2020
Published in Issue Year 2020 Volume: 30 Issue: Ek sayı (Additional issue)

Cite

APA Doğru, A., & Torlak, E. (2020). Tuz Stresi Altındaki Mısır Bitkilerinde Eksojen Askorbik Asit Uygulamasının Etkileri. Yuzuncu Yıl University Journal of Agricultural Sciences, 30(Ek sayı (Additional issue), 919-927. https://doi.org/10.29133/yyutbd.724730
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.