Research Article
BibTex RIS Cite

Ekmeklik Buğday Genotiplerinde Tane Kalitesi Özelliklerinin Gamma Işını Kullanılarak Mutasyon Islahı ile Geliştirilmesi

Year 2021, Volume: 31 Issue: 4, 973 - 981, 31.12.2021
https://doi.org/10.29133/yyutbd.899862

Abstract

Bu çalışma, farklı gamma ışını ile ışınlanmış üç ekmeklik buğday genotipinin M2, M3 ve M4 mutant popülasyonlarında bazı kalite özelliklerindeki değişimin belirlenmesi için yürütülmüştür. Sonuçlar, M2, M3 ve M4 popülasyonlarında farklı gamma ışını dozlarında çeşitli özellikler için genotiplerin yanıtlarının önemli ve değişken bir şekilde farklı olduğunu göstermiştir. Mutant popülasyonlarında bin tane ağırlığı (BTA), hektolitre ağırlığı (HA), yaş glüten içeriği (YGİ), glüten indeks (Gİ), Zeleny sedimantasyon değeri (ZSD) ve protein içeriği (Pİ) gibi kalite özelliklerinin kontrole göre değişimi t-testine göre önemli bulunmuştur. Sonuçlar, ekmeklik buğday genotiplerine bağlı olarak farklı dozlarda gamma ışını uygulaması ile M2, M3 ve M4 generasyonlarında kalite özellikleri için istenilen varyasyonların elde edilebileceğini göstermiştir. M2, M3 ve M4 generasyonlarında kontrollere göre ZSD, YGİ ve Pİ de önemli değişimler olmasında rağmen, BTA, Gİ ve HA da ise değişim olmamış ya da biraz olumsuz bir değişim olmuştur. Genel olarak, mutant popülasyonlarda tane kalitesi özellikleri için M4 generasyonundan seleksiyon yapmanın daha uygun olabileceği söylenebilir. Mutagen dozlarının etkisi incelenen özelliğe, genotipe ve mutant generasyona bağlı olarak değişmekle birlikte, kontrollere göre önemli değişimlere neden olduğundan dolayı 200 ve 300 Gy dozlarının en uygun gamma ışını dozları olduğu söylenebilir.

References

  • AACC. (2000). Approved methods of the American association of cereal chemists. Methods 38-12 and 46-13, tenth ed. American Association of Cereal Chemists, St. Paul, MN.
  • Ahloowalia, B.S., Maluszynski, M. & Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica 135, 187-204.
  • Ahmadi-Gavligi, H., Sahari, M.A., Azizi-Tabrizzad, M.H. & Rashmeh-Karim, K. (2004). Protein content of important wheat varieties in Iran and their technological properties. International Journal of Environmental Science and Technology 1(2), 1-7.
  • Al-Rumaih, M. M. & Al-Rumaih, M.M. (2008). Influence of ionizing radiation on antioxidant enzymes in three species of Trigonella. American Journal of Environmental Science 4(2), 151-156.
  • Animasaun, D.A., Morakinyo, J.A. & Mustapha, O.T. (2014). Assessment of the effects of gamma irradiation on the growth and yield of Digitaria exilis (Haller). Journal of Applied Biosciences 75, 6164-6172.
  • Anwar, M.M., Asael, M.A. & El-Adly, N.A. (2015). Gamma radiation influence on rheological and technological characteristics of wheat flour (misr-1) and sensory properties of pan bread. Journal of Nuclear Technology and Applied Science 3(2), 89-97.
  • Balkan, A., Bilgin, O., Başer, İ., Göçmen, D.B., Demirkan, A.K. & Deviren, B. (2019). Improvement of grain yield and yield associated traits in bread wheat (Triticum aestivum L.) genotypes through mutation breeding using gamma irradiation. Journal of Tekirdag Agricultural Faculty 16(1), 103-111.
  • Balkan, A. (2018). Genetic variability, heritability and genetic advance for yield and quality traits in M2-4 generations of bread wheat (Triticum aestivum L.) genotypes. Turkish Journal Field Crops 23(2), 173-179.
  • Borzouei, A., Kafi, M., Sayahi, R., Rabiei, E. & Amin, P.S. (2013). Biochemical response of two wheat cultivars (Triticum aestivum L.) to gamma radiation. Pakistan Journal of Botany 45(2), 473-477.
  • Brankovic, G., Dodig, D., Pajic, V., Kandic, V., Knezevic, D., Duric, N. & Zivanovic, T. (2018). Genetic parameters of Triticum aestivum and Triticum durum for technological quality properties in Serbia. Zemdirbyste-Agriculture 105(1), 39-48.
  • Brunner, H. (1991). Methods of induction of mutations. In: Mandal, A. K., Ganguli, P. K., Banerjee, S.P. (Eds.), Advances in Plant Breeding. CBS Publishers and Distributors, Delhi.
  • Byerlee, D. & Moya, P. (1993). Impact of International Wheat Breeding Research in The Developing World. pp. 12-16. In: Klatt, A.R. (Eds.). Wheat production prospects: past, present and future, CIMMYT, Mexico.
  • Dolińska, R., Klockiewicz-Kamińska, E., Zabielski, J. & Warchalewski, J.R. (2001). The technological characteristics of the first generation of wheat grain which was gamma irradiated before sowing. Żywność 4(29), 23-35.
  • Gralik, J. & Warchalewski, J.R. (2006). The influence of γ-irradiation on some biological activities and electrophoresis patterns of wheat grain albumin fraction. Food Chemistry 99, 289-298.
  • Ibrahim, E.I.E. (2008). Influence of gamma-irradiation on the physico-chemical properties of the tow Sudanese wheat (Triticum aestivum) cultivars. M.Sc Dissertation, University of Khartoum, Faculty of Agriculture.
  • ICC. (1972). ICC Standart Method 166/1: Determination of the sedimentation value (according to Zeleny) as an Approximate Measure of Baking Quality.
  • ICC. (1994). ICC Standard No 155: Determination of wet gluten quantity and quality (Gluten Index ac. To Perten) of Whole Wheat Meal and Wheat Flour.
  • ICC. (1995). ICC Standard No 159: Determination of protein by near-infrared reflectance (NIR) Spectroscopy.
  • Jain, S.M. (2005). Major mutation-assisted plant breeding programmes supported by FAO/IAEA. Plant Cell Tissue Organa Culture 82, 113-121.
  • Kharkwal, M.C. & Shu, Q.Y. (2009). The Role of induced mutations in world food security. In: Induced Plant Mutations in the Genomics Era, Proceedings of the International Joint FAO/IAEA Symposium IAEA, Vienna.
  • MacKay, T.F.C. (2011). Mutations and quantitative genetic variation: lessons from Drosophila. Philosophical Transactions of the Royal Society B 365, 1229-1239.
  • Mansour, H.M., Abdel-Tawab, F.M., Fahmy, E.M., Mahrous, S.R., Eissa, H.F. & Saleh, O.M. (2012). Modifications of gene expression of some quality traits in bread wheat using gamma irradiation. Egyptian Journal of Genetics and Cytology 41, 37-48.
  • Marathe, S.A., Machaiah, J.P., Rao, B.Y.K., Pednekar, M.D. & Rao, V.S. (2002). Extension of self-life of whole flour by gamma radiation. International Journal of Food Science and Technology 37, 163-168.
  • Mba, C. (2013). Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3, 200-231.
  • Mba, C., Afza, R., Bado, S., Jain, S.M., Davey, M.R. & Anthony, P. (2010). Induced mutagenesis in plants using physical and chemical agents. Plant Cell Culture: Essential Methods 111-130.
  • Nayeem, K.A., Devkule, S.N. & Bhagwat, S.G. (1999). Seed protein variations in radiation induced mutant of wheat. Indian Journal of Genetics and Plant Breeding 59, 363-369.
  • Oka, H.I., Hayashi, J. & Shiojlri, I. (1958). Induced mutations of polygenes for quantitative characters in rice. Journal of Heredity 49, 11-14.
  • Paredes-Lopez, O. & Covarrusbias-Alvarez, M.M. (1984). Influence of gamma radiation on the technological and functional properties of bread wheats. Journal of Food Technology 19, 225-231.
  • Rahemi, M.R., Yamchi, A., Navabpour, S., Soltanloo, H. & Roepstorff, P. (2018). Gamma ray effects on traits related to wheat bakery quality in Roshan cultivar. Journal of Crop Breeding 10(26), 120-127.
  • Salem, E.A., Soliman, S.A., El-Karamany, A.M. & Abd El-Shafea, Y.M. (2016). Effect of utilization of gamma radiation treatment and storage on total fungal count, chemical composition and technological properties wheat grain. Egyptian Journal of Biological Pest Control 26(1), 163-171.
  • Seabourn, B.W., Tilley, X., Herald, Z.S.M. & Park, S.H. (2012). A rapid, small-scale sedimentation method to predict breadmaking quality of hard winter wheat. Crop Science 52,1306-1315.
  • Sosedov, N.I. &Vakar, A.B. (1961). Effect of x-rays on the biochemical properties of wheat, Proceedings 5th International Congress Biochemistry. Moscow, August 10-16, p. 133.
  • Steel, R.G.D. & Torrie, J.H. (1980). Principle and procedures of statistics: A biometrical approach. McGraw Hill Book Co. Inc. New York.
  • Suprasanna, P., Mirajkar, S.J. & Bhagwat, S.G. (2015). Induced mutations and crop improvement. In: Bahadur, B., V. M. Rajam, L. Sahijram and K. V. Krishnamurthy (Eds.), Plant biology and biotechnology. Vol. I. Plant Diversity, Organization, Function and Improvement, Springer India
  • Swaminathan, M.S. (1972). Mutational reconstruction of crop ideotypes. Induced mutations and plant improvement. In: Proc Study Group Meeting of IAEA-FAO, Buenos Aires 1970.1AEA, Vienna.

Improvement of Grain Quality Traits in Bread Wheat Genotypes Through Mutation Breeding Using Gamma Irradiation

Year 2021, Volume: 31 Issue: 4, 973 - 981, 31.12.2021
https://doi.org/10.29133/yyutbd.899862

Abstract

This study was conducted to determine changes for some quality characters in M2, M3 and M4 mutated populations of three bread wheat genotypes irradiated by different gamma rays. The results showed that the genotypes significantly and variably differed in their response for various traits at different gamma rays doses in M2, M3, and M4 populations. The shifts per see from the controls for examined quality characters such as thousand-grain weight (TGW), test weight (TW), wet gluten content (GC), gluten index (GI), Zeleny sedimentation value (ZSV), and protein content (PC) in mutant populations were significant according to t-test analysis. The results showed that desired variations could be obtained for quality traits in M2, M3, and M4 generations with different doses of gamma irradiation depending on bread wheat genotypes. Although the shifts per see from the controls for ZSV, GC, and PC were significant, TGW, GI, and TW showed an unchanged or slightly negative response in the M2, M3, and M4 generations. It can be generally said that it may be more appropriate to perform selection after M4 generation for seed quality traits in mutant populations. Although the effect of mutagen doses varies depending on the character, genotype, and mutagenesis generation examined, it can be said that the most appropriategamma-rayy doses are 300 and 200 Gy doses because of causing significant shifts per see from the controls.

References

  • AACC. (2000). Approved methods of the American association of cereal chemists. Methods 38-12 and 46-13, tenth ed. American Association of Cereal Chemists, St. Paul, MN.
  • Ahloowalia, B.S., Maluszynski, M. & Nichterlein, K. (2004). Global impact of mutation-derived varieties. Euphytica 135, 187-204.
  • Ahmadi-Gavligi, H., Sahari, M.A., Azizi-Tabrizzad, M.H. & Rashmeh-Karim, K. (2004). Protein content of important wheat varieties in Iran and their technological properties. International Journal of Environmental Science and Technology 1(2), 1-7.
  • Al-Rumaih, M. M. & Al-Rumaih, M.M. (2008). Influence of ionizing radiation on antioxidant enzymes in three species of Trigonella. American Journal of Environmental Science 4(2), 151-156.
  • Animasaun, D.A., Morakinyo, J.A. & Mustapha, O.T. (2014). Assessment of the effects of gamma irradiation on the growth and yield of Digitaria exilis (Haller). Journal of Applied Biosciences 75, 6164-6172.
  • Anwar, M.M., Asael, M.A. & El-Adly, N.A. (2015). Gamma radiation influence on rheological and technological characteristics of wheat flour (misr-1) and sensory properties of pan bread. Journal of Nuclear Technology and Applied Science 3(2), 89-97.
  • Balkan, A., Bilgin, O., Başer, İ., Göçmen, D.B., Demirkan, A.K. & Deviren, B. (2019). Improvement of grain yield and yield associated traits in bread wheat (Triticum aestivum L.) genotypes through mutation breeding using gamma irradiation. Journal of Tekirdag Agricultural Faculty 16(1), 103-111.
  • Balkan, A. (2018). Genetic variability, heritability and genetic advance for yield and quality traits in M2-4 generations of bread wheat (Triticum aestivum L.) genotypes. Turkish Journal Field Crops 23(2), 173-179.
  • Borzouei, A., Kafi, M., Sayahi, R., Rabiei, E. & Amin, P.S. (2013). Biochemical response of two wheat cultivars (Triticum aestivum L.) to gamma radiation. Pakistan Journal of Botany 45(2), 473-477.
  • Brankovic, G., Dodig, D., Pajic, V., Kandic, V., Knezevic, D., Duric, N. & Zivanovic, T. (2018). Genetic parameters of Triticum aestivum and Triticum durum for technological quality properties in Serbia. Zemdirbyste-Agriculture 105(1), 39-48.
  • Brunner, H. (1991). Methods of induction of mutations. In: Mandal, A. K., Ganguli, P. K., Banerjee, S.P. (Eds.), Advances in Plant Breeding. CBS Publishers and Distributors, Delhi.
  • Byerlee, D. & Moya, P. (1993). Impact of International Wheat Breeding Research in The Developing World. pp. 12-16. In: Klatt, A.R. (Eds.). Wheat production prospects: past, present and future, CIMMYT, Mexico.
  • Dolińska, R., Klockiewicz-Kamińska, E., Zabielski, J. & Warchalewski, J.R. (2001). The technological characteristics of the first generation of wheat grain which was gamma irradiated before sowing. Żywność 4(29), 23-35.
  • Gralik, J. & Warchalewski, J.R. (2006). The influence of γ-irradiation on some biological activities and electrophoresis patterns of wheat grain albumin fraction. Food Chemistry 99, 289-298.
  • Ibrahim, E.I.E. (2008). Influence of gamma-irradiation on the physico-chemical properties of the tow Sudanese wheat (Triticum aestivum) cultivars. M.Sc Dissertation, University of Khartoum, Faculty of Agriculture.
  • ICC. (1972). ICC Standart Method 166/1: Determination of the sedimentation value (according to Zeleny) as an Approximate Measure of Baking Quality.
  • ICC. (1994). ICC Standard No 155: Determination of wet gluten quantity and quality (Gluten Index ac. To Perten) of Whole Wheat Meal and Wheat Flour.
  • ICC. (1995). ICC Standard No 159: Determination of protein by near-infrared reflectance (NIR) Spectroscopy.
  • Jain, S.M. (2005). Major mutation-assisted plant breeding programmes supported by FAO/IAEA. Plant Cell Tissue Organa Culture 82, 113-121.
  • Kharkwal, M.C. & Shu, Q.Y. (2009). The Role of induced mutations in world food security. In: Induced Plant Mutations in the Genomics Era, Proceedings of the International Joint FAO/IAEA Symposium IAEA, Vienna.
  • MacKay, T.F.C. (2011). Mutations and quantitative genetic variation: lessons from Drosophila. Philosophical Transactions of the Royal Society B 365, 1229-1239.
  • Mansour, H.M., Abdel-Tawab, F.M., Fahmy, E.M., Mahrous, S.R., Eissa, H.F. & Saleh, O.M. (2012). Modifications of gene expression of some quality traits in bread wheat using gamma irradiation. Egyptian Journal of Genetics and Cytology 41, 37-48.
  • Marathe, S.A., Machaiah, J.P., Rao, B.Y.K., Pednekar, M.D. & Rao, V.S. (2002). Extension of self-life of whole flour by gamma radiation. International Journal of Food Science and Technology 37, 163-168.
  • Mba, C. (2013). Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3, 200-231.
  • Mba, C., Afza, R., Bado, S., Jain, S.M., Davey, M.R. & Anthony, P. (2010). Induced mutagenesis in plants using physical and chemical agents. Plant Cell Culture: Essential Methods 111-130.
  • Nayeem, K.A., Devkule, S.N. & Bhagwat, S.G. (1999). Seed protein variations in radiation induced mutant of wheat. Indian Journal of Genetics and Plant Breeding 59, 363-369.
  • Oka, H.I., Hayashi, J. & Shiojlri, I. (1958). Induced mutations of polygenes for quantitative characters in rice. Journal of Heredity 49, 11-14.
  • Paredes-Lopez, O. & Covarrusbias-Alvarez, M.M. (1984). Influence of gamma radiation on the technological and functional properties of bread wheats. Journal of Food Technology 19, 225-231.
  • Rahemi, M.R., Yamchi, A., Navabpour, S., Soltanloo, H. & Roepstorff, P. (2018). Gamma ray effects on traits related to wheat bakery quality in Roshan cultivar. Journal of Crop Breeding 10(26), 120-127.
  • Salem, E.A., Soliman, S.A., El-Karamany, A.M. & Abd El-Shafea, Y.M. (2016). Effect of utilization of gamma radiation treatment and storage on total fungal count, chemical composition and technological properties wheat grain. Egyptian Journal of Biological Pest Control 26(1), 163-171.
  • Seabourn, B.W., Tilley, X., Herald, Z.S.M. & Park, S.H. (2012). A rapid, small-scale sedimentation method to predict breadmaking quality of hard winter wheat. Crop Science 52,1306-1315.
  • Sosedov, N.I. &Vakar, A.B. (1961). Effect of x-rays on the biochemical properties of wheat, Proceedings 5th International Congress Biochemistry. Moscow, August 10-16, p. 133.
  • Steel, R.G.D. & Torrie, J.H. (1980). Principle and procedures of statistics: A biometrical approach. McGraw Hill Book Co. Inc. New York.
  • Suprasanna, P., Mirajkar, S.J. & Bhagwat, S.G. (2015). Induced mutations and crop improvement. In: Bahadur, B., V. M. Rajam, L. Sahijram and K. V. Krishnamurthy (Eds.), Plant biology and biotechnology. Vol. I. Plant Diversity, Organization, Function and Improvement, Springer India
  • Swaminathan, M.S. (1972). Mutational reconstruction of crop ideotypes. Induced mutations and plant improvement. In: Proc Study Group Meeting of IAEA-FAO, Buenos Aires 1970.1AEA, Vienna.
There are 35 citations in total.

Details

Primary Language English
Subjects Agronomy
Journal Section Articles
Authors

Alpay Balkan 0000-0002-9203-6144

Oğuz Bilgin 0000-0002-4338-9912

İsmet Başer

Publication Date December 31, 2021
Acceptance Date December 7, 2021
Published in Issue Year 2021 Volume: 31 Issue: 4

Cite

APA Balkan, A., Bilgin, O., & Başer, İ. (2021). Improvement of Grain Quality Traits in Bread Wheat Genotypes Through Mutation Breeding Using Gamma Irradiation. Yuzuncu Yıl University Journal of Agricultural Sciences, 31(4), 973-981. https://doi.org/10.29133/yyutbd.899862
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.