Phosphorus-Enriched Organomineral Fertilizers Affect the Cation Exchange Algorithm of the Soil: A Comparative Evaluation
Year 2023,
Volume: 33 Issue: 2, 298 - 312, 30.06.2023
Serdar Toprak
,
Saime Seferoğlu
Abstract
The aim of this study is to determine the effects of phosphorus-enriched cattle manure applications on the exchangeable cations content, cation exchange capacity (CEC), and base saturation rate (BSR) of the lime soil. The research was carried out with four different levels (except control) of dairy cattle manure (M1: 10; M2: 20; M3: 30; M4: 40 t ha-1) and with four different levels (except control) of phosphorus dose (P1: 10; P2: 20; P3: 30; P4: 40 kg P ha-1) in the ecological conditions of Southwest Türkiye during the wheat vegetation period of 2019-2021. The study was carried out in medium calcareous soil (14.8%) with three replications randomized blocks experimental by composing organomineral fertilizer combinations. According to the results of the study, the highest change in exchangeable Ca and K content in soils was obtained from organomineral fertilizer applications by 11.2% and 29.7% respectively, and the highest change in exchangeable Mg and Na content was obtained from dairy cattle manure applications by 25.1% and 18.2%, respectively for M4P2 (40 t ha-1 dairy cattle manure + 20 kg P ha-1). Among the fertilization systems, the highest increase in total exchangeable cations was 13.1% and the increase in CEC was 21.3% in organomineral fertilizer applications. The fastest decrease in the BSR was also obtained from the organomineral fertilization system. As a result, it has been determined that M4P2 application is the most economical and the most effective combination in the cation exchange capacity among organomineral fertilizer combinations.
Supporting Institution
ADNAN MENDERES ÜNİVERSİTESİ, BİLİMSEL ARAŞTIRMALAR FONU
Thanks
We would like to thank Adnan Menderes University Scientific Research Fund for supporting this project.
References
- Alamgir, M., McNeill, A., Tang, C., & Marschner, P. (2012). Changes in soil P pools during legume residue decomposition. Soil Biology and Biochemistry, 49, 70-77. https://doi.org/10.1016/j. soilbio.2012.01.031
- Alkharabsheh, H.M., Seleiman, M.F., Battaglia, M.L., Shami, A., Jalal, R.S., Alhammad, B. A., & Al-Saif, A.M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5), 993. https://doi.org/10.3390/agronomy 11050993
- Angelova, V.R., Akova, V.I., Artınova N.S., & Ivanov, K.I. (2013). The effect of organic amendments on soil chemical characteristics. Bulgarian Journal of Agricultural Science, 19(5), 958-971.
Bai, J., Ye, X., Jia, J., Zhang, G., Zhao, Q., Cui, B., & Liu, X. (2017). Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 188, 677-688. https://doi.org/10.1016/j.chemosphere.2017.08.117
- Behera, S. K., Oh, S.Y., & Park, H.S. (2010). Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid. Journal of Hazardous Materials, 179(1-3), 684-691. https://doi.org/10.1016/j.jhazmat.2010.03.056
- Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81(4), 687-711. https://doi.org/10.2136/sssaj2017.01.0017
- Boethling, R.S. (2019). Environmental aspects of cationic surfactants. In Catonic Surfactants (pp. 95-136). CRC Press. ISBN: 9780429270376
- Çimrin, K.M. (2020). Relationship between some soil characteristics and contribution on available phosphorus of inorganic phosphorus fractions in calcareous soils. Mustafa Kemal University Journal of Agricultural Sciences, 25(2), 138-144. https://doi.org/10.37908/mkutbd.702342
- Daneshgar, S., Callegari, A., Capodaglio, A. G., & Vaccari, D. (2018). The potential phosphorus crisis: resource conservation and possible escape technologies: a review. Resources, 7(2), 37. https://doi.org/10.3390/resources7020037
- Demir, H., Topuz, A., Gölkcü, M., Polat, E., Özdemir, F., & Şahin, H. (2003). The effect of different organic fertilizer applications on the mineral content of tomatoes in ecological production. Journal of Akdeniz University Faculty of Agriculture, 16(1), 19-25.
- Demirel, B.C., & Şenol, S. (2019). Detailed soil survey and site assessments of urban areas with rapid growth potential: Case study of Mustafalar, Adana. Yüzüncü Yıl University Journal of Agricultural Sciences, 29(4), 711-721. https://doi.org/10.29133/yyutbd.622099
- Demirtaş, E.I., Asri, F., Özkan, C.F., & Arı, N. (2012). The effects of organic and chemical fertilizer applications on soil fertility and plant nutrition in greenhouse tomato cultivation. Western Mediterranean Agricultural Research Institute Derim Journal, 29(1), 9-22.
- Dengiz, O., Göl, C., & Chairman, O. (2007). Soil properties and mapping of Büyükçay Basin (Çankırı), Artvin Çoruh University Journal of Forestry Faculty, 8(1), 46-58.
- Dijkstra, F.A. (2003). Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US. Forest Ecology and Management, 175(1-3), 185–194. https://doi.org/10.1016/S0378-1127(02)00128-7
- Doetterl, S., Berhe, A.A., Arnold, C., Bodé, S., Fiener, P., Finke, P., & Boeckx, P. (2018). Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nature Geoscience, 11(8), 589-593. https://doi.org/10.1038/s41561-018-0168-7
- Erdal, I. (2018). Research Studies Using Organomineral Fertilizers in Turkey and Obtained Results. Organomineral Fertilizer Workshop. Papers. Sena Ofset Ambalaj Matbaacılık San. p: 156-165. Istanbul. ISBN: 978-975-7169-89-5.
- Fernandez, A.L., Sheaffer, C.C., Wyse, D.L., Staley, C., Gould, T.J., & Sadowsky, M.J. (2016). Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Science of the Total Environment, 566, 949-959. https://doi.org/10.1016/j.scitotenv.2016.05.073
- Foth, H. D., & Ellis, B. G. (2018). Soil Fertility. CRC Press. https://doi.org/10.1201/9780203739341
- Francou, C., Poitrenaud, M., & Houot, S. (2005). Stabilization of organicmatter during composting. Influence of process and feed stocks. Compost Science and Utilization, 13(1), 72-83. https://doi.org/10.1080/1065657X.2005.10702220
- Gayathri, B., Srinivasamurthy, C.A., Vasanthi, B.G., Naveen, D.V., Prakash, N.B., & Bhaskar, S. (2019). Extraction and charactrisation of humic acid from different organic wastes and its physicochemical properties. International Journal of Chemical Studies, 7(6), 769-775. 10.22271/chemi.2020.v8.i1k.8359
- Geng, Y., Pan, S., Zhang, L., Qiu, J., He, K., Gao, H., & Tian, D. (2022). Phosphorus biogeochemistry regulated by carbonates in soil. Environmental Research, 214(2), 113894. https://doi.org/10.1016/j.envres.2022.113894
- Guckland, A., Jacob, M., Flessa, H., Thomas F.M., & Leuschner, C. (2009). Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.), Journal of Plant Nutrition and Soil Science, 172, 500–511. https://doi.org/10.1002/jpln.200800072
- Gustafsson, J.P., & Van Schaik, J.W.J. (2003). Cation binding in a mor layer: batch experiments and modelling. Europian Journal of Soil Science, 54(2), 295-310. https://doi.org/10.1046/j.1365-2389.2003.00526.x
- JMP, (2007). JMP7 Statistic Program, SAS Statistics Institute 7.0 for Windows. Armonk, NY.
- Kacar, B., & Katkat, A.V. (2009). Fertilizers and Fertilization Technique. Nobel Publication Distribution. 559 p. Kızılay-Ankara.
- Kacar, B., & Katkat, V. (2010). Plant Nutrition. 5th Edition, Nobel Yayın Dağıtım Tic. Ltd. Sti, 678 p. Kızılay-Ankara.
- Kara, B. (2014). Potassium use efficiency of some bread wheat cultivars. Biological Diversity and Conservation, 7(2), 105-109.
- Kasongo, R.K., Verdoodt, A., Kanyankagote, P., Baert, G., & Ranst, E.V. (2011). Coffee waste as an alternative fertilizer with soil improving properties for sandy soils in humid tropical environments. Soil Use and Management, 27(1), 94-102. https://doi.org/10.1111/j.1475-2743.2010.00315.x
- Khoshgoftarmanesh, A.H., & Kalbasi, M. (2002). Effect of municipal waste leachate on soil properties and growth and yield of rice. Communications in Soil Science and Plant Analysis, 33(13-14), 2011-2020. https://doi.org/10.1081/CSS-120005745
- Kleber, M., Bourg, I.C., Coward, E.K., Hansel, C.M., Myneni, S.C., & Nunan, N. (2021). Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment, 2(6), 402-421. https://doi.org/10.1038/s43017-021-00162-y
- Leogrande, R., & Vitti, C. (2019). Use of organic amendments to reclaim saline and sodic soils: a review. Arid Land Research and Management, 33(1), 1-21. https://doi.org/10.1080/15324982. 2018.1498038
- Liu, J., Wang, Z., Hu, F., Xu, C., Ma, R., & Zhao, S. (2020). Soil organic matter and silt contents determine soil particle surface electrochemical properties across a long-term natural restoration grassland. Catena, 190, 104526. https://doi.org/10.1016/j.catena.2020.104526
- Malhotra, H., Sharma, S., & Pandey, R. (2018). Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance (pp. 171-190). Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_7
- Manimel, M.C., Michaelis, V.K., Kroeker, S., & Akinremi, O.O. (2013). Exchangeable calcium/magnesium ratio affects phosphorus behavior in calcareous soils. Soil Science Society of America Journal, 77(6), 2004-2013. https://doi.org/10.2136/sssaj2012.0102
- Meier, M, Chin, Y.P., & Maurice, P.A. (2004). Variations in the composition and adsorption behavior of dissolved organic matter at a small, forested watershed. Biogeochemistry, 67(1), 39-56. https://doi.org/10.1023/B:BIOG.0000015278.23470.f7
- Melenya, C., Logah, V., Aryee, D., Abubakari, A., Tuffour, H.O. & Yeboah, I.B. (2015). Sorption of phosphorus in soils in the semi deciduous forest zone of Ghana. Applied Reseach Journal, 1(3), 169-175.
- MGM, (2016). General Directorate of Meteorology, Turkish Climate According to Köppen Climate Classification. https://www.mgm.gov.tr/FILES/iklim/iklim_siniflandirmalari/koppen.pdf Access Date: 25.09.2021.
- Mounirou, M., Kaya, E., Ouedraogo, A., Demir, K., Güneş, A., & İnal, A. (2020). Effects of biochar and organic fertilizer applications on the growth and chemical fertilizer use efficiency of onion plant. Journal of Soil Science and Plant Nutrition , 8(1) 36-45. https://doi.org/10.33409/ tbbbd.757008
- Namlı, A., Akça, M.O., & Akça, H. (2019). Effects of organic and organomineral fertilizers developed from organic materials of Afşin-Elbistan basin lignite plant on wheat yield and yield components and some soil properties, Journal of Soil Science and Plant Nutrition, 7(1), 10-20. https://doi.org/10.33409/tbbbd.594998
- Naveed, M., Duan, J., Uddin, S., Suleman, M., Hui, Y., & Li, H. (2020). Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecological Engineering, 153, 105885. https://doi.org/10.1016/ j.ecoleng.2020.105885
- Neirynck, J., Mirtcheva, S., Sioen, G., & Lust, N. (2000). Impact of Tiliaplatyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy soil. Forest Ecology and Management, 133(3), 275–286. https://doi.org/10.1016/S0378-1127(99)00240-6
Oorts, K., Vanlauwe, B., & Merckx, R. (2003). Cation exchange capacities of soil organic matter fractions in a Ferric Lixisol with different organic matter inputs. Agriculture, Ecosystems and Environment, 100(2-3), 161-171. https://doi.org/10.1016/S0167-8809(03)00190-7
- Osman, K.T. (2013). Forest Soils. In: Soils Springer, Holland, Pp. 229-251. https://doi.org/10.1007/978-94-007-5663-2_14
- Reich, P.B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S.E., Eissenstat, D.M., Chorover, J., Chadwick, O., Hale, C.M., & Tjoelker, M.G. (2005). Linking litter calcium, earthworm and soil properties: A common garden test with 14 tree species. Ecology Letters, 8(8), 811–818. https://doi.org/10.1111/j.1461-0248.2005.00779.x
- Rhoades, J.D. (1982a). Cation Exchange Capacity. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronomy. No: 9 Part 2. Edition 149-157.
- Rhoades, J.D. (1982b). Exchangeable Cations. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronomy. No: 9 Part 2. Edition 159-164.
- Rytwo, G., Tropp, D., & Serban, C. (2002). Adsorption of diquat, paraquat and methyl green on sepiolite: experimental results and model calculations. Applied Clay Science, 20(6), 273–282. https://doi.org/10.1016/S0169-1317(01)00068-0
- Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., & Zhang, F. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology, 156(3), 997-1005. https://doi.org/10.1104/pp.111.175232
- Siregar, A., Kleber, M., Mikutta, R., & Jahn, R. (2005). Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. European Journal of Soil Science, 56, 481-490. https://doi.org/10.1111/j.1365-2389.2004.00680.x
- Smith, W.B., Wilson, M., & Pagliari, P. (2020). Organomineral fertilizers and their application to field crops. Animal manure: Production, characteristics. Environmental Concerns, and Management, 67, 229-243. https://doi.org/10.2134/asaspecpub67.c18
- Süzer, S., & Çulhacı, E. (2017). The effects of different organomineral and inorganic compound fertilizers on winter bread wheat grain yield and some yield components. Journal of Soil Science and Plant Nutrition, 5(2), 87-92.
Timmer, N., Gore, D., Sanders, D., Gouin, T., & Droge, S.T. (2020). Application of seven different clay types in sorbent-modified biodegradability studies with cationic biocides. Chemosphere, 245, 125643. https://doi.org/10.1016/j.chemosphere.2019.125643
- Toprak, S. (2019). The effect of iron-rich organomineral fertilizers on apple nutrition. International Anatolian Journal of Agricultural Engineering Sciences, 1(3), 9-20.
- Verma, V.K., Setia, R.K., Sharma, P.L., Charanjit, S., & Kumar, A. (2005). Pedospheric Variations in distribution of DPTA – extractable micronutrients in soils developed on different physiographic units in central parts of Punjab, India. International Journal of Agriculture and Biology, 7(2), 243 - 246.
- Whittinghill, K.A., & Hobbie, S.E. (2012). Effects of pH and calcium on soil organic matter dynamics in Alaskan tundra. Biogeochemistry, 111, 569–581. https://doi.org/10.1007/s10533-011-9688-6
- Wuddivira, M.N., & Camps-Roach, G. (2007). Effects of organic matter and calcium on soil structural stability, European Journal of Soil Science, 58, 722–727. https://doi.org/10.1111/j.1365-2389.2006.00861.x
- Yalçın, M., Çimrin, K.M., & Tutuş, Y. (2018). Nutrient status of meadow-pasture soils in Hatay province Kırıkhan-Reyhanlı Region and their relations with some soil properties. Kahramanmaraş Sütçü İmam University, Journal of Agriculture and Nature, 21(3), 385-396. https://doi.org/10.18016/ksudobil.342009
- Yossif, M.A., & Gezgin S. (2020). Effects of mono-ammonium phosphate and K-Humate applications on grain yield and phosphorus uptake efficiency of bread wheat crop (Triticum aestivum L.). International Journal of Plant and Soil Science, 32(12), 56-61.
- Zhang, J., Tang, L., Geng, Y., Ma, J., Yang, H., Huo, Z., & Li, Z. (2021). Microbial regulation of dissolution, adsorption and precipitation of phosphates influenced by various carbon sources. Chemical Geology, 560, 120021. https://doi.org/10.1016/j.chemgeo.2020.120021
- Zhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Fr
Year 2023,
Volume: 33 Issue: 2, 298 - 312, 30.06.2023
Serdar Toprak
,
Saime Seferoğlu
References
- Alamgir, M., McNeill, A., Tang, C., & Marschner, P. (2012). Changes in soil P pools during legume residue decomposition. Soil Biology and Biochemistry, 49, 70-77. https://doi.org/10.1016/j. soilbio.2012.01.031
- Alkharabsheh, H.M., Seleiman, M.F., Battaglia, M.L., Shami, A., Jalal, R.S., Alhammad, B. A., & Al-Saif, A.M. (2021). Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy, 11(5), 993. https://doi.org/10.3390/agronomy 11050993
- Angelova, V.R., Akova, V.I., Artınova N.S., & Ivanov, K.I. (2013). The effect of organic amendments on soil chemical characteristics. Bulgarian Journal of Agricultural Science, 19(5), 958-971.
Bai, J., Ye, X., Jia, J., Zhang, G., Zhao, Q., Cui, B., & Liu, X. (2017). Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions. Chemosphere, 188, 677-688. https://doi.org/10.1016/j.chemosphere.2017.08.117
- Behera, S. K., Oh, S.Y., & Park, H.S. (2010). Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: effects of pH, ionic strength, and humic acid. Journal of Hazardous Materials, 179(1-3), 684-691. https://doi.org/10.1016/j.jhazmat.2010.03.056
- Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81(4), 687-711. https://doi.org/10.2136/sssaj2017.01.0017
- Boethling, R.S. (2019). Environmental aspects of cationic surfactants. In Catonic Surfactants (pp. 95-136). CRC Press. ISBN: 9780429270376
- Çimrin, K.M. (2020). Relationship between some soil characteristics and contribution on available phosphorus of inorganic phosphorus fractions in calcareous soils. Mustafa Kemal University Journal of Agricultural Sciences, 25(2), 138-144. https://doi.org/10.37908/mkutbd.702342
- Daneshgar, S., Callegari, A., Capodaglio, A. G., & Vaccari, D. (2018). The potential phosphorus crisis: resource conservation and possible escape technologies: a review. Resources, 7(2), 37. https://doi.org/10.3390/resources7020037
- Demir, H., Topuz, A., Gölkcü, M., Polat, E., Özdemir, F., & Şahin, H. (2003). The effect of different organic fertilizer applications on the mineral content of tomatoes in ecological production. Journal of Akdeniz University Faculty of Agriculture, 16(1), 19-25.
- Demirel, B.C., & Şenol, S. (2019). Detailed soil survey and site assessments of urban areas with rapid growth potential: Case study of Mustafalar, Adana. Yüzüncü Yıl University Journal of Agricultural Sciences, 29(4), 711-721. https://doi.org/10.29133/yyutbd.622099
- Demirtaş, E.I., Asri, F., Özkan, C.F., & Arı, N. (2012). The effects of organic and chemical fertilizer applications on soil fertility and plant nutrition in greenhouse tomato cultivation. Western Mediterranean Agricultural Research Institute Derim Journal, 29(1), 9-22.
- Dengiz, O., Göl, C., & Chairman, O. (2007). Soil properties and mapping of Büyükçay Basin (Çankırı), Artvin Çoruh University Journal of Forestry Faculty, 8(1), 46-58.
- Dijkstra, F.A. (2003). Calcium mineralization in the forest floor and surface soil beneath different tree species in the northeastern US. Forest Ecology and Management, 175(1-3), 185–194. https://doi.org/10.1016/S0378-1127(02)00128-7
- Doetterl, S., Berhe, A.A., Arnold, C., Bodé, S., Fiener, P., Finke, P., & Boeckx, P. (2018). Links among warming, carbon and microbial dynamics mediated by soil mineral weathering. Nature Geoscience, 11(8), 589-593. https://doi.org/10.1038/s41561-018-0168-7
- Erdal, I. (2018). Research Studies Using Organomineral Fertilizers in Turkey and Obtained Results. Organomineral Fertilizer Workshop. Papers. Sena Ofset Ambalaj Matbaacılık San. p: 156-165. Istanbul. ISBN: 978-975-7169-89-5.
- Fernandez, A.L., Sheaffer, C.C., Wyse, D.L., Staley, C., Gould, T.J., & Sadowsky, M.J. (2016). Associations between soil bacterial community structure and nutrient cycling functions in long-term organic farm soils following cover crop and organic fertilizer amendment. Science of the Total Environment, 566, 949-959. https://doi.org/10.1016/j.scitotenv.2016.05.073
- Foth, H. D., & Ellis, B. G. (2018). Soil Fertility. CRC Press. https://doi.org/10.1201/9780203739341
- Francou, C., Poitrenaud, M., & Houot, S. (2005). Stabilization of organicmatter during composting. Influence of process and feed stocks. Compost Science and Utilization, 13(1), 72-83. https://doi.org/10.1080/1065657X.2005.10702220
- Gayathri, B., Srinivasamurthy, C.A., Vasanthi, B.G., Naveen, D.V., Prakash, N.B., & Bhaskar, S. (2019). Extraction and charactrisation of humic acid from different organic wastes and its physicochemical properties. International Journal of Chemical Studies, 7(6), 769-775. 10.22271/chemi.2020.v8.i1k.8359
- Geng, Y., Pan, S., Zhang, L., Qiu, J., He, K., Gao, H., & Tian, D. (2022). Phosphorus biogeochemistry regulated by carbonates in soil. Environmental Research, 214(2), 113894. https://doi.org/10.1016/j.envres.2022.113894
- Guckland, A., Jacob, M., Flessa, H., Thomas F.M., & Leuschner, C. (2009). Acidity, nutrient stocks, and organic-matter content in soils of a temperate deciduous forest with different abundance of European beech (Fagus sylvatica L.), Journal of Plant Nutrition and Soil Science, 172, 500–511. https://doi.org/10.1002/jpln.200800072
- Gustafsson, J.P., & Van Schaik, J.W.J. (2003). Cation binding in a mor layer: batch experiments and modelling. Europian Journal of Soil Science, 54(2), 295-310. https://doi.org/10.1046/j.1365-2389.2003.00526.x
- JMP, (2007). JMP7 Statistic Program, SAS Statistics Institute 7.0 for Windows. Armonk, NY.
- Kacar, B., & Katkat, A.V. (2009). Fertilizers and Fertilization Technique. Nobel Publication Distribution. 559 p. Kızılay-Ankara.
- Kacar, B., & Katkat, V. (2010). Plant Nutrition. 5th Edition, Nobel Yayın Dağıtım Tic. Ltd. Sti, 678 p. Kızılay-Ankara.
- Kara, B. (2014). Potassium use efficiency of some bread wheat cultivars. Biological Diversity and Conservation, 7(2), 105-109.
- Kasongo, R.K., Verdoodt, A., Kanyankagote, P., Baert, G., & Ranst, E.V. (2011). Coffee waste as an alternative fertilizer with soil improving properties for sandy soils in humid tropical environments. Soil Use and Management, 27(1), 94-102. https://doi.org/10.1111/j.1475-2743.2010.00315.x
- Khoshgoftarmanesh, A.H., & Kalbasi, M. (2002). Effect of municipal waste leachate on soil properties and growth and yield of rice. Communications in Soil Science and Plant Analysis, 33(13-14), 2011-2020. https://doi.org/10.1081/CSS-120005745
- Kleber, M., Bourg, I.C., Coward, E.K., Hansel, C.M., Myneni, S.C., & Nunan, N. (2021). Dynamic interactions at the mineral–organic matter interface. Nature Reviews Earth & Environment, 2(6), 402-421. https://doi.org/10.1038/s43017-021-00162-y
- Leogrande, R., & Vitti, C. (2019). Use of organic amendments to reclaim saline and sodic soils: a review. Arid Land Research and Management, 33(1), 1-21. https://doi.org/10.1080/15324982. 2018.1498038
- Liu, J., Wang, Z., Hu, F., Xu, C., Ma, R., & Zhao, S. (2020). Soil organic matter and silt contents determine soil particle surface electrochemical properties across a long-term natural restoration grassland. Catena, 190, 104526. https://doi.org/10.1016/j.catena.2020.104526
- Malhotra, H., Sharma, S., & Pandey, R. (2018). Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance (pp. 171-190). Springer, Singapore. https://doi.org/10.1007/978-981-10-9044-8_7
- Manimel, M.C., Michaelis, V.K., Kroeker, S., & Akinremi, O.O. (2013). Exchangeable calcium/magnesium ratio affects phosphorus behavior in calcareous soils. Soil Science Society of America Journal, 77(6), 2004-2013. https://doi.org/10.2136/sssaj2012.0102
- Meier, M, Chin, Y.P., & Maurice, P.A. (2004). Variations in the composition and adsorption behavior of dissolved organic matter at a small, forested watershed. Biogeochemistry, 67(1), 39-56. https://doi.org/10.1023/B:BIOG.0000015278.23470.f7
- Melenya, C., Logah, V., Aryee, D., Abubakari, A., Tuffour, H.O. & Yeboah, I.B. (2015). Sorption of phosphorus in soils in the semi deciduous forest zone of Ghana. Applied Reseach Journal, 1(3), 169-175.
- MGM, (2016). General Directorate of Meteorology, Turkish Climate According to Köppen Climate Classification. https://www.mgm.gov.tr/FILES/iklim/iklim_siniflandirmalari/koppen.pdf Access Date: 25.09.2021.
- Mounirou, M., Kaya, E., Ouedraogo, A., Demir, K., Güneş, A., & İnal, A. (2020). Effects of biochar and organic fertilizer applications on the growth and chemical fertilizer use efficiency of onion plant. Journal of Soil Science and Plant Nutrition , 8(1) 36-45. https://doi.org/10.33409/ tbbbd.757008
- Namlı, A., Akça, M.O., & Akça, H. (2019). Effects of organic and organomineral fertilizers developed from organic materials of Afşin-Elbistan basin lignite plant on wheat yield and yield components and some soil properties, Journal of Soil Science and Plant Nutrition, 7(1), 10-20. https://doi.org/10.33409/tbbbd.594998
- Naveed, M., Duan, J., Uddin, S., Suleman, M., Hui, Y., & Li, H. (2020). Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecological Engineering, 153, 105885. https://doi.org/10.1016/ j.ecoleng.2020.105885
- Neirynck, J., Mirtcheva, S., Sioen, G., & Lust, N. (2000). Impact of Tiliaplatyphyllos Scop., Fraxinus excelsior L., Acer pseudoplatanus L., Quercus robur L. and Fagus sylvatica L. on earthworm biomass and physico-chemical properties of a loamy soil. Forest Ecology and Management, 133(3), 275–286. https://doi.org/10.1016/S0378-1127(99)00240-6
Oorts, K., Vanlauwe, B., & Merckx, R. (2003). Cation exchange capacities of soil organic matter fractions in a Ferric Lixisol with different organic matter inputs. Agriculture, Ecosystems and Environment, 100(2-3), 161-171. https://doi.org/10.1016/S0167-8809(03)00190-7
- Osman, K.T. (2013). Forest Soils. In: Soils Springer, Holland, Pp. 229-251. https://doi.org/10.1007/978-94-007-5663-2_14
- Reich, P.B., Oleksyn, J., Modrzynski, J., Mrozinski, P., Hobbie, S.E., Eissenstat, D.M., Chorover, J., Chadwick, O., Hale, C.M., & Tjoelker, M.G. (2005). Linking litter calcium, earthworm and soil properties: A common garden test with 14 tree species. Ecology Letters, 8(8), 811–818. https://doi.org/10.1111/j.1461-0248.2005.00779.x
- Rhoades, J.D. (1982a). Cation Exchange Capacity. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronomy. No: 9 Part 2. Edition 149-157.
- Rhoades, J.D. (1982b). Exchangeable Cations. Methods of Soil Analysis Part 2. Chemical and Microbiological Properties Second Edition. Agronomy. No: 9 Part 2. Edition 159-164.
- Rytwo, G., Tropp, D., & Serban, C. (2002). Adsorption of diquat, paraquat and methyl green on sepiolite: experimental results and model calculations. Applied Clay Science, 20(6), 273–282. https://doi.org/10.1016/S0169-1317(01)00068-0
- Shen, J., Yuan, L., Zhang, J., Li, H., Bai, Z., Chen, X., & Zhang, F. (2011). Phosphorus dynamics: From soil to plant. Plant Physiology, 156(3), 997-1005. https://doi.org/10.1104/pp.111.175232
- Siregar, A., Kleber, M., Mikutta, R., & Jahn, R. (2005). Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. European Journal of Soil Science, 56, 481-490. https://doi.org/10.1111/j.1365-2389.2004.00680.x
- Smith, W.B., Wilson, M., & Pagliari, P. (2020). Organomineral fertilizers and their application to field crops. Animal manure: Production, characteristics. Environmental Concerns, and Management, 67, 229-243. https://doi.org/10.2134/asaspecpub67.c18
- Süzer, S., & Çulhacı, E. (2017). The effects of different organomineral and inorganic compound fertilizers on winter bread wheat grain yield and some yield components. Journal of Soil Science and Plant Nutrition, 5(2), 87-92.
Timmer, N., Gore, D., Sanders, D., Gouin, T., & Droge, S.T. (2020). Application of seven different clay types in sorbent-modified biodegradability studies with cationic biocides. Chemosphere, 245, 125643. https://doi.org/10.1016/j.chemosphere.2019.125643
- Toprak, S. (2019). The effect of iron-rich organomineral fertilizers on apple nutrition. International Anatolian Journal of Agricultural Engineering Sciences, 1(3), 9-20.
- Verma, V.K., Setia, R.K., Sharma, P.L., Charanjit, S., & Kumar, A. (2005). Pedospheric Variations in distribution of DPTA – extractable micronutrients in soils developed on different physiographic units in central parts of Punjab, India. International Journal of Agriculture and Biology, 7(2), 243 - 246.
- Whittinghill, K.A., & Hobbie, S.E. (2012). Effects of pH and calcium on soil organic matter dynamics in Alaskan tundra. Biogeochemistry, 111, 569–581. https://doi.org/10.1007/s10533-011-9688-6
- Wuddivira, M.N., & Camps-Roach, G. (2007). Effects of organic matter and calcium on soil structural stability, European Journal of Soil Science, 58, 722–727. https://doi.org/10.1111/j.1365-2389.2006.00861.x
- Yalçın, M., Çimrin, K.M., & Tutuş, Y. (2018). Nutrient status of meadow-pasture soils in Hatay province Kırıkhan-Reyhanlı Region and their relations with some soil properties. Kahramanmaraş Sütçü İmam University, Journal of Agriculture and Nature, 21(3), 385-396. https://doi.org/10.18016/ksudobil.342009
- Yossif, M.A., & Gezgin S. (2020). Effects of mono-ammonium phosphate and K-Humate applications on grain yield and phosphorus uptake efficiency of bread wheat crop (Triticum aestivum L.). International Journal of Plant and Soil Science, 32(12), 56-61.
- Zhang, J., Tang, L., Geng, Y., Ma, J., Yang, H., Huo, Z., & Li, Z. (2021). Microbial regulation of dissolution, adsorption and precipitation of phosphates influenced by various carbon sources. Chemical Geology, 560, 120021. https://doi.org/10.1016/j.chemgeo.2020.120021
- Zhu, T., & Dittrich, M. (2016). Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Fr