Research Article
BibTex RIS Cite

Removal of Nitrogen and Phosphorus from Liquid Dairy Manure using Microalgae

Year 2024, Volume: 34 Issue: 4, 571 - 583, 31.12.2024
https://doi.org/10.29133/yyutbd.1492195

Abstract

Animal production wastes and effluents are among the most highly produced wastewaters, containing high concentrations of nutrients and microbes that could lead to contamination and eutrophication of water sources. Large-scale enterprises in cattle breeding face challenges in storing and removing a substantial volume of liquid manure (LM). Therefore, the management of LM becomes an economic burden for producers. In this case, the question arises as to whether a more economical and sustainable treatment method can be employed by utilizing LM from animal production in algal growth, which has emerged as a renewable raw material source in recent years. In this study, a microalgae Ankistrodesmus sp. was employed for nutrient removal from dairy LM at concentrations of 10%, 20%, and 30% over 35 days. The total nitrogen reduction rates in the reactors with 10%, 20%, and 30% LM were 72.8%, 69.1%, and 71%, respectively, while the total phosphorus reduction rates were 65.7%, 52.6%, and 31.5%, respectively. Overall, integrating microalgae cultivation into wastewater treatment processes shows promise for nutrient removal and biomass production. By leveraging the nutrient-rich characteristics of LM from cattle farming, microalgae provide a sustainable and effective approach to reduce environmental pollution and enhance resource recovery in agriculture. Further research and development in this field are essential for optimizing treatment methods and improving the environmental sustainability of livestock operations.

Supporting Institution

Scientific and Technological Research Council of Turkey

Project Number

TUBİTAK 2209-A 2023/1 - 1919B012304550

Thanks

The authors thanks to Scientific and Technological Research Council of Turkey, period 2209-A-2023/1 (University Students Domestic Research Projects Support Program), with project number 1919B012304550.

References

  • Akca, M. S. (2015). Microalgal Growth In Anaerobic Digestate. (M.Sc). Graduate School Of Science Engıneerıng and Technology, İstanbul Technical University. İstanbul, Türkiye.
  • Batista, A. P., Ambrosano, L., Graça, S., Sousa, C., Marques, P. A., Ribeiro, B., ... & Gouveia, L. (2015). Combining urban wastewater treatment with biohydrogen production–an integrated microalgae-based approach. Bioresource Technology, 184, 230-235. https://doi.org/10.1016/j.biortech.2014.10.064
  • Beauchamp, E. G., Kidd, G. E., & Thurtell, G. (1982). Ammonia volatilization from liquid dairy cattle manure in the field. Canadian Journal of Soil Science, 62(1), 11-19. https://doi.org/10.4141/cjss82-00
  • Becker, E. W. (1994). Microalgae: biotechnology and microbiology (Vol. 10). Cambridge University Press.
  • Çakmakcı, T., Sahin, U., Kızıloglu, F. M., Tufenkci, Ş., Kuşlu, Y., & Erkuş, F. Ş. (2017). Yapay Sulak Alanlarında Atık Su Arıtımı ve Soğuk İklime Sahip Bölgelerde Kullanım Önerileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27(4), 651-656.
  • Chang, R., Pandey, P., James, P., Pandey, P., Li, Y., Zhang, R., & Weimer, B. C. (2022). Assessment Impacts of Ozone on Salmonella typhimurium and Escherichia coli O157: H7 in Liquid Dairy Waste. Applied Sciences, 12(13), 6527.
  • Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., ... & Wei, D. (2020). A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 387, 121682. https://doi.org/10.1016/j.jhazmat.2019.121682
  • Chiu, S. Y., Kao, C. Y., Chen, T. Y., Chang, Y. B., Kuo, C. M., & Lin, C. S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184, 179-189.
  • Coşkun, Ç., Pulatsü, S., & Coşkun, T. (2018). Evsel Atıksulardan Azot ve Fosforun Biyolojik Giderilme Yöntemleri. Kilis 7 Aralık Üniversitesi Fen ve Mühendislik Dergisi, 2(2), 53-63.
  • Fang, C., Zhang, T., Li, P., Jiang, R. F., & Wang, Y. C. (2014). Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater. International Journal of Environmental Research and Public Health, 11(9), 9217-9237. https://doi.org/10.3390/ijerph110909217
  • Ferreira, V. S., Pinto, R. F., & Sant'Anna, C. (2016). Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. Journal of Applied Microbiology, 120(3), 661-670. https://doi.org/10.1111/jam.13007
  • Hadi, R. F., Hertanto, B. S., & Wati, A. K. Reducing the number of microorganisms and organic carbon by implementation of APS (Advanced Ponds System) in the wastewater of dairy goat with added liquid probiotics. Livestock and Animal Research, 18(3), 246-252. https://doi.org/10.20961/lar.v18i3.45997
  • Halim, F. T., Guo, X., Su, G., Ngee, H. L., Zeng, X., He, N., ... & Danquah, M. K. (2016). Sustainable microalgae‐based palm oil mill effluent treatment process with simultaneous biomass production. The Canadian Journal of Chemical Engineering, 94(10), 1848-1854. https://doi.org/10.1002/cjce.22584
  • Hodaifa, G., Martínez, M. E., & Sánchez, S. (2009). Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater. Biotechnology and Bioprocess Engineering, 14, 854-860. https://doi.org/10.1007/s12257-009-0119-7
  • İlgi, K. K., & Şebnem, A. (2007). Sürekli İşletilen Alg-Fotobiyoreaktör Sisteminde Atık Sudan Azot Giderimi. 7. Ulusal Çevre Mühendisliği Kongresi Bildiri Kitabı, İzmir, 267-273.
  • Izmailov, A. Y., Lobachevsky, Y. P., Dorokhov, A. S., Kozhevnikov, Y. A., & Mamedova, R. A. (2021). Experimental modeling of the microalgae cultivation in a photobioreactor using manure. In BIO Web of Conferences (Vol. 37, p. 00114). EDP Sciences. https://doi.org/10.1051/bioconf/20213700114
  • Kisielewska, M., Zieliński, M., Dębowski, M., Kazimierowicz, J., Romanowska-Duda, Z., & Dudek, M. (2020). Effectiveness of Scenedesmus sp. biomass grow and nutrients removal from liquid phase of digestates. Energies, 13(6), 1432. https://doi.org/10.3390/en13061432
  • Knight, R. L., Payne Jr, V. W., Borer, R. E., Clarke Jr, R. A., & Pries, J. H. (2000). Constructed wetlands for livestock wastewater management. Ecological Engineering, 15(1-2), 41-55. https://doi.org/10.1016/S0925-8574(99)00034-8
  • Lopes, W. R. T., Orrico, A. C. A., Garcia, R. G., Orrico Jr, M. A. P., Manarelli, D. M., Fava, A. F., & Nääs, I. A. (2016). The addition of hatchery liquid waste to dairy manure improves anaerobic digestion. Brazilian Journal of Poultry Science, 18, 65-70. https://doi.org/10.1590/1806-9061-2016-0279
  • Martinez, J., Dabert, P., Barrington, S., & Burton, C. (2009). Livestock waste treatment systems for environmental quality, food safety, and sustainability. Bioresource Technology, 100(22), 5527-5536. https://doi.org/10.1016/j.biortech.2009.02.038
  • Matsi, T., Lithourgidis, A. S., & Gagianas, A. A. (2003). Effects of injected liquid cattle manure on growth and yield of winter wheat and soil characteristics. Agronomy Journal, 95(3), 592-596. https://doi.org/10.2134/agronj2003.5920
  • Osabutey, A., Haleem, N., Uguz, S., Min, K., Samuel, R., Albert, K., ... & Yang, X. (2023). Growth of Scenedesmus dimorphus in swine wastewater with versus without solid–liquid separation pretreatment. Bioresource Technology, 369, 128434.
  • Pinedo-Hernández, J., Paternina-Uribe, R., & Marrugo-Negrete, J. (2016). Alternative electrocoagulation for livestock wastewater treatment. Portugaliae Electrochim. Acta, 34(4), 277-85. https://doi.org/10.4152/pea.201604277
  • Psenovschi, G., Vintila, A., Matei, C., Paulenco, A., & Velea, S. (2019). Biogas Production by Anaerobic Digestion Coupled with Wastewater Treatment. Multidisciplinary Digital Publishing Institute Proceedings, 29(1), 99. https://doi.org/10.3390/proceedings2019029099
  • Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & De Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing a review. Renewable and Sustainable Energy Reviews, 27, 622-653.
  • Regueiro, I., Siebert, P., Liu, J., Müller-Stöver, D., & Jensen, L. S. (2020). Acidified animal manure products combined with a nitrification inhibitor can serve as a starter fertilizer for maize. Agronomy, 10(12), 1941.
  • Shelknanloymilan, L., Atici, T., & Obal, O. (2012). Removal of nitrogen and phosphate by using Choleralla vulgaris on synthetic and organic materials waste water. Biological Diversity and Conservation, 5(2), 89-94.
  • Sheng, L., Shen, X., Benedict, C., Su, Y., Tsai, H. C., Schacht, E., ... & Zhu, M. J. (2019). Microbial safety of dairy manure fertilizer application in raspberry production. Frontiers in Microbiology, 10, 2276.
  • Sokołowska, L., & Seniczak, S. (2005). The effect of cattle liquid manure fertilization on alternating grassland and some groups of soil mesofauna. Folia Biologica (Kraków), 53(4), 133-137. https://doi.org/10.3409/173491605775789407
  • Tam, N. F. Y., & Wong, Y. (1996). Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology, 57(1), 45-50.
  • Thomas, B. W., Li, X., Nelson, V., & Hao, X. (2017). Anaerobically digested cattle manure supplied more nitrogen with less phosphorus accumulation than undigested manure. Agronomy Journal, 109(3), 836-844. https://doi.org/10.2134/agronj2016.12.0719
  • Uguz, S., & Sozcu, A. (2023). Nutritional Value of Microalgae and Cyanobacteria Produced with Batch and Continuous Cultivation: Potential Use as Feed Material in Poultry Nutrition. Animals, 13(21), 3431. https://doi.org/10.3390/ani13213431
  • Uguz, S., Anderson, G., Yang, X., Simsek, E., & Osabutey, A. (2022). Cultivation of Scenedesmus dimorphus with air contaminants from a pig confinement building. Journal of Environmental Management, 314, 115129. https://doi.org/10.1016/j.jenvman.2022.115129
  • Usui, M., Tamura, Y., & Asai, T. (2022). Current status and future perspective of antimicrobial-resistant bacteria and resistance genes in animal-breeding environments. Journal of Veterinary Medical Science, 84(9), 1292-1298. https://doi.org/10.1292/jvms.22-0253
  • Wang, H., Zhang, W., Chen, L., Wang, J., & Liu, T. (2013). The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresource Technology, 128, 745-750.
  • Wang, Y., Pandey, P., Chiu, C., Jeannotte, R., Kuppu, S., Zhang, R., ... & Aly, S. (2020). Quantification of antibiotic resistance genes and mobile genetic elements in dairy manure. Peer J. (23;9:e12408). doi: 10.7717/peerj.12408.
  • Yen, H. W., Ho, S. H., Chen, C. Y., & Chang, J. S. (2015). CO2, NOx and SOx removal from flue gas via microalgae cultivation: A critical review. Biotechnology Journal, 10(6), 829-839. https://doi.org/10.1002/biot.201400707
  • Zhang, M., Gavlak, R., Mitchell, A., & Sparrow, S. (2006). Solid and liquid cattle manure application in a subarctic soil: Bromegrass and oat production and soil properties. Agronomy Journal, 98(6), 1551-1558. https://doi.org/10.2134/agronj2006.0045
  • Zhu, L., Wang, Z., Takala, J., Hiltunen, E., Qin, L., Xu, Z., ... & Yuan, Z. (2013). Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresource Technology, 137, 318-325.
  • Zieliński, M., Dębowski, M., Szwaja, S., & Kisielewska, M. (2018). Anaerobic digestion effluents (ADEs) treatment coupling with chlorella sp. microalgae production. Water Environment Research, 90(2), 155-163. https://doi.org/10.2175/106143017X14902968254890
Year 2024, Volume: 34 Issue: 4, 571 - 583, 31.12.2024
https://doi.org/10.29133/yyutbd.1492195

Abstract

Project Number

TUBİTAK 2209-A 2023/1 - 1919B012304550

References

  • Akca, M. S. (2015). Microalgal Growth In Anaerobic Digestate. (M.Sc). Graduate School Of Science Engıneerıng and Technology, İstanbul Technical University. İstanbul, Türkiye.
  • Batista, A. P., Ambrosano, L., Graça, S., Sousa, C., Marques, P. A., Ribeiro, B., ... & Gouveia, L. (2015). Combining urban wastewater treatment with biohydrogen production–an integrated microalgae-based approach. Bioresource Technology, 184, 230-235. https://doi.org/10.1016/j.biortech.2014.10.064
  • Beauchamp, E. G., Kidd, G. E., & Thurtell, G. (1982). Ammonia volatilization from liquid dairy cattle manure in the field. Canadian Journal of Soil Science, 62(1), 11-19. https://doi.org/10.4141/cjss82-00
  • Becker, E. W. (1994). Microalgae: biotechnology and microbiology (Vol. 10). Cambridge University Press.
  • Çakmakcı, T., Sahin, U., Kızıloglu, F. M., Tufenkci, Ş., Kuşlu, Y., & Erkuş, F. Ş. (2017). Yapay Sulak Alanlarında Atık Su Arıtımı ve Soğuk İklime Sahip Bölgelerde Kullanım Önerileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 27(4), 651-656.
  • Chang, R., Pandey, P., James, P., Pandey, P., Li, Y., Zhang, R., & Weimer, B. C. (2022). Assessment Impacts of Ozone on Salmonella typhimurium and Escherichia coli O157: H7 in Liquid Dairy Waste. Applied Sciences, 12(13), 6527.
  • Cheng, D., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., ... & Wei, D. (2020). A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches. Journal of Hazardous Materials, 387, 121682. https://doi.org/10.1016/j.jhazmat.2019.121682
  • Chiu, S. Y., Kao, C. Y., Chen, T. Y., Chang, Y. B., Kuo, C. M., & Lin, C. S. (2015). Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresource Technology, 184, 179-189.
  • Coşkun, Ç., Pulatsü, S., & Coşkun, T. (2018). Evsel Atıksulardan Azot ve Fosforun Biyolojik Giderilme Yöntemleri. Kilis 7 Aralık Üniversitesi Fen ve Mühendislik Dergisi, 2(2), 53-63.
  • Fang, C., Zhang, T., Li, P., Jiang, R. F., & Wang, Y. C. (2014). Application of magnesium modified corn biochar for phosphorus removal and recovery from swine wastewater. International Journal of Environmental Research and Public Health, 11(9), 9217-9237. https://doi.org/10.3390/ijerph110909217
  • Ferreira, V. S., Pinto, R. F., & Sant'Anna, C. (2016). Low light intensity and nitrogen starvation modulate the chlorophyll content of Scenedesmus dimorphus. Journal of Applied Microbiology, 120(3), 661-670. https://doi.org/10.1111/jam.13007
  • Hadi, R. F., Hertanto, B. S., & Wati, A. K. Reducing the number of microorganisms and organic carbon by implementation of APS (Advanced Ponds System) in the wastewater of dairy goat with added liquid probiotics. Livestock and Animal Research, 18(3), 246-252. https://doi.org/10.20961/lar.v18i3.45997
  • Halim, F. T., Guo, X., Su, G., Ngee, H. L., Zeng, X., He, N., ... & Danquah, M. K. (2016). Sustainable microalgae‐based palm oil mill effluent treatment process with simultaneous biomass production. The Canadian Journal of Chemical Engineering, 94(10), 1848-1854. https://doi.org/10.1002/cjce.22584
  • Hodaifa, G., Martínez, M. E., & Sánchez, S. (2009). Influence of pH on the culture of Scenedesmus obliquus in olive-mill wastewater. Biotechnology and Bioprocess Engineering, 14, 854-860. https://doi.org/10.1007/s12257-009-0119-7
  • İlgi, K. K., & Şebnem, A. (2007). Sürekli İşletilen Alg-Fotobiyoreaktör Sisteminde Atık Sudan Azot Giderimi. 7. Ulusal Çevre Mühendisliği Kongresi Bildiri Kitabı, İzmir, 267-273.
  • Izmailov, A. Y., Lobachevsky, Y. P., Dorokhov, A. S., Kozhevnikov, Y. A., & Mamedova, R. A. (2021). Experimental modeling of the microalgae cultivation in a photobioreactor using manure. In BIO Web of Conferences (Vol. 37, p. 00114). EDP Sciences. https://doi.org/10.1051/bioconf/20213700114
  • Kisielewska, M., Zieliński, M., Dębowski, M., Kazimierowicz, J., Romanowska-Duda, Z., & Dudek, M. (2020). Effectiveness of Scenedesmus sp. biomass grow and nutrients removal from liquid phase of digestates. Energies, 13(6), 1432. https://doi.org/10.3390/en13061432
  • Knight, R. L., Payne Jr, V. W., Borer, R. E., Clarke Jr, R. A., & Pries, J. H. (2000). Constructed wetlands for livestock wastewater management. Ecological Engineering, 15(1-2), 41-55. https://doi.org/10.1016/S0925-8574(99)00034-8
  • Lopes, W. R. T., Orrico, A. C. A., Garcia, R. G., Orrico Jr, M. A. P., Manarelli, D. M., Fava, A. F., & Nääs, I. A. (2016). The addition of hatchery liquid waste to dairy manure improves anaerobic digestion. Brazilian Journal of Poultry Science, 18, 65-70. https://doi.org/10.1590/1806-9061-2016-0279
  • Martinez, J., Dabert, P., Barrington, S., & Burton, C. (2009). Livestock waste treatment systems for environmental quality, food safety, and sustainability. Bioresource Technology, 100(22), 5527-5536. https://doi.org/10.1016/j.biortech.2009.02.038
  • Matsi, T., Lithourgidis, A. S., & Gagianas, A. A. (2003). Effects of injected liquid cattle manure on growth and yield of winter wheat and soil characteristics. Agronomy Journal, 95(3), 592-596. https://doi.org/10.2134/agronj2003.5920
  • Osabutey, A., Haleem, N., Uguz, S., Min, K., Samuel, R., Albert, K., ... & Yang, X. (2023). Growth of Scenedesmus dimorphus in swine wastewater with versus without solid–liquid separation pretreatment. Bioresource Technology, 369, 128434.
  • Pinedo-Hernández, J., Paternina-Uribe, R., & Marrugo-Negrete, J. (2016). Alternative electrocoagulation for livestock wastewater treatment. Portugaliae Electrochim. Acta, 34(4), 277-85. https://doi.org/10.4152/pea.201604277
  • Psenovschi, G., Vintila, A., Matei, C., Paulenco, A., & Velea, S. (2019). Biogas Production by Anaerobic Digestion Coupled with Wastewater Treatment. Multidisciplinary Digital Publishing Institute Proceedings, 29(1), 99. https://doi.org/10.3390/proceedings2019029099
  • Razzak, S. A., Hossain, M. M., Lucky, R. A., Bassi, A. S., & De Lasa, H. (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing a review. Renewable and Sustainable Energy Reviews, 27, 622-653.
  • Regueiro, I., Siebert, P., Liu, J., Müller-Stöver, D., & Jensen, L. S. (2020). Acidified animal manure products combined with a nitrification inhibitor can serve as a starter fertilizer for maize. Agronomy, 10(12), 1941.
  • Shelknanloymilan, L., Atici, T., & Obal, O. (2012). Removal of nitrogen and phosphate by using Choleralla vulgaris on synthetic and organic materials waste water. Biological Diversity and Conservation, 5(2), 89-94.
  • Sheng, L., Shen, X., Benedict, C., Su, Y., Tsai, H. C., Schacht, E., ... & Zhu, M. J. (2019). Microbial safety of dairy manure fertilizer application in raspberry production. Frontiers in Microbiology, 10, 2276.
  • Sokołowska, L., & Seniczak, S. (2005). The effect of cattle liquid manure fertilization on alternating grassland and some groups of soil mesofauna. Folia Biologica (Kraków), 53(4), 133-137. https://doi.org/10.3409/173491605775789407
  • Tam, N. F. Y., & Wong, Y. (1996). Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology, 57(1), 45-50.
  • Thomas, B. W., Li, X., Nelson, V., & Hao, X. (2017). Anaerobically digested cattle manure supplied more nitrogen with less phosphorus accumulation than undigested manure. Agronomy Journal, 109(3), 836-844. https://doi.org/10.2134/agronj2016.12.0719
  • Uguz, S., & Sozcu, A. (2023). Nutritional Value of Microalgae and Cyanobacteria Produced with Batch and Continuous Cultivation: Potential Use as Feed Material in Poultry Nutrition. Animals, 13(21), 3431. https://doi.org/10.3390/ani13213431
  • Uguz, S., Anderson, G., Yang, X., Simsek, E., & Osabutey, A. (2022). Cultivation of Scenedesmus dimorphus with air contaminants from a pig confinement building. Journal of Environmental Management, 314, 115129. https://doi.org/10.1016/j.jenvman.2022.115129
  • Usui, M., Tamura, Y., & Asai, T. (2022). Current status and future perspective of antimicrobial-resistant bacteria and resistance genes in animal-breeding environments. Journal of Veterinary Medical Science, 84(9), 1292-1298. https://doi.org/10.1292/jvms.22-0253
  • Wang, H., Zhang, W., Chen, L., Wang, J., & Liu, T. (2013). The contamination and control of biological pollutants in mass cultivation of microalgae. Bioresource Technology, 128, 745-750.
  • Wang, Y., Pandey, P., Chiu, C., Jeannotte, R., Kuppu, S., Zhang, R., ... & Aly, S. (2020). Quantification of antibiotic resistance genes and mobile genetic elements in dairy manure. Peer J. (23;9:e12408). doi: 10.7717/peerj.12408.
  • Yen, H. W., Ho, S. H., Chen, C. Y., & Chang, J. S. (2015). CO2, NOx and SOx removal from flue gas via microalgae cultivation: A critical review. Biotechnology Journal, 10(6), 829-839. https://doi.org/10.1002/biot.201400707
  • Zhang, M., Gavlak, R., Mitchell, A., & Sparrow, S. (2006). Solid and liquid cattle manure application in a subarctic soil: Bromegrass and oat production and soil properties. Agronomy Journal, 98(6), 1551-1558. https://doi.org/10.2134/agronj2006.0045
  • Zhu, L., Wang, Z., Takala, J., Hiltunen, E., Qin, L., Xu, Z., ... & Yuan, Z. (2013). Scale-up potential of cultivating Chlorella zofingiensis in piggery wastewater for biodiesel production. Bioresource Technology, 137, 318-325.
  • Zieliński, M., Dębowski, M., Szwaja, S., & Kisielewska, M. (2018). Anaerobic digestion effluents (ADEs) treatment coupling with chlorella sp. microalgae production. Water Environment Research, 90(2), 155-163. https://doi.org/10.2175/106143017X14902968254890
There are 40 citations in total.

Details

Primary Language English
Subjects Biosystem
Journal Section Articles
Authors

Nermine Koç 0009-0000-7121-1954

Sude Barbaros 0009-0004-7587-2863

Ebru Çelik 0009-0004-7499-3065

Seyit Uğuz 0000-0002-3994-8099

Ercan Şimşek 0000-0001-9979-5496

Erkan Yaslıoglu 0000-0002-3865-7863

Project Number TUBİTAK 2209-A 2023/1 - 1919B012304550
Early Pub Date December 15, 2024
Publication Date December 31, 2024
Submission Date May 31, 2024
Acceptance Date August 14, 2024
Published in Issue Year 2024 Volume: 34 Issue: 4

Cite

APA Koç, N., Barbaros, S., Çelik, E., Uğuz, S., et al. (2024). Removal of Nitrogen and Phosphorus from Liquid Dairy Manure using Microalgae. Yuzuncu Yıl University Journal of Agricultural Sciences, 34(4), 571-583. https://doi.org/10.29133/yyutbd.1492195
Creative Commons License
Yuzuncu Yil University Journal of Agricultural Sciences by Van Yuzuncu Yil University Faculty of Agriculture is licensed under a Creative Commons Attribution 4.0 International License.