Research Article
BibTex RIS Cite

Investigation of the flow properties of the micro jet sprinkler using computational fluid dynamics

Year 2022, Volume: 59 Issue: 1, 93 - 105, 30.03.2022
https://doi.org/10.20289/zfdergi.929494

Abstract

Objective: The objective of this study was to determine the flow properties of the micro jet sprinkler by using Computational Fluid Dynamics (CFD) method and also the most suitable turbulence model.
Material and Methods: In the study, micro jet sprinklers with four different nozzle diameters were considered. In the first stage of the study, the flow rates of micro jet sprinklers at different pressures, and wetting diameters at nominal operating pressure (200 kPa) were measured. In the second stage, the values calculated with different turbulence models by using computational fluid dynamics analysis method were compared with the measured ones.
Results: The flow rates for all nozzle diameters were estimated with a very low error value such as the highest 2.16% at 200 kPa, which is the nominal working pressure by using Reliz k-ε, Enh Wall turbulence model. In addition, the simulations of the water distribution in the sprinkler nozzle outlet and flapper area were found to be very close to experimental values.
Conclusion: It was found that the flow rate values of the micro jet sprinkler can be estimated with very low error by using Reliz k-ε, Enh Wall turbulence model and the design of sprinkler nozzles can be achieved with simulations quickly and easily.

References

  • ANSYS, 2016. Fluent Theory Guide, Release 17.2, ANSYS, Inc.
  • ANSYS, 2007. ANSYS Fluent Flow Lab1.2, ANSYS, Inc.
  • ASAE Standard, 1995. ASAE S398.1, Procedure for Sprinkler Testing and Performance Reporting. ASAE, St. Joseph, MI 49085.
  • Benami, A. & A. Ofen, 1993. Irrigation Engineering. Irrigation Engineering Scientific Publications, Hafia, Israel.
  • Bhaskar, K.U., Y.R. Murthy, M.R. Raju, S. Tiwari, J.K. Srivastava & N. Ramakrishnan, 2007. CFD simulation and experimental validation studies on hydrocyclone. Minerals Engineering, 20:60-71. https://doi.org/10.1016/j.mineng.2006.04.012
  • Boman, B. J., 1991. Micro tubing effects on microsprinkler discharge rates. Transactions of the ASAE, 34(1):51-56. https://doi: 10.13031/2013.31631
  • Demir, V., 1997. Mikro Sulama Sistemlerini Oluşturan Elemanların Teknik Özelliklerinin ve Bu Sistemlerdeki Sürtünme Kayıplarının Belirlenmesi Üzerine Bir Araştırma. Ege Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Doktora Tezi, İzmir, 211 s.
  • Demir, V., H. Yürdem, T. Günhan & A. Yazgı, 2017. Damla sulama sistemlerinde kullanilan hidrosiklon filtrelerde basınç kaybı ve ayırma etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemi ile belirlenmesi. Tarım Makinaları Bilimi Dergisi, 13 (1): 55-67.
  • Demir, V., H. Yürdem, A. Yazgı & T. Günhan, 2020. Determination of the hydraulic properties of a flat type drip emitter using computational fluid dynamics. Tarım Bilimleri Dergisi - Journal of Agricultural Sciences, 26(2): 226-235. https://doi: 10.15832/ankutbd.492686
  • Demirel, Ç. & V. Demir, 2015. Mini yağmurlama sulama başlıklarının teknik özeliklerinin incelenmesi ve debi değerlerinin tahminlenmesinde kullanılabilecek bir matematiksel modelin geliştirilmesi. Anadolu Tarım Bilimleri Dergisi, 30 (2015): 118-125. https://doi: 10.7161/anajas.2015.30.2.118-125
  • Güngör, Y. & O. Yıldırım, 1989. Tarla Sulama Sistemleri. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara, No:1155, 325 s.
  • Hills, D.J., R.C.M. Silveria & W.W. Wallender, 1986. Oscillating pressure for improving application uniformity of spray emitters. Transactions of the ASAE, 29 (4):1080-1085. https://doi: 10.13031/2013.30273
  • Hsieh, K.T., 1988. Phenomenological Model of the Hydrocyclone, University of Utah, Dept. of Metallurgy and Metallurgical Engineering, Ph.D Thesis, Utah,143 pp.
  • ISO Standard, 1985. ISO 8026, Agricultural Irrigation Equipment - Sprayers - General Requirements and Test Methods. International Organization for Standardization.
  • Keller, J. & R. D. Bliesner, 1990. Sprinkler and Trickle Irrigation. An Avi Book, Van Nostrand Reinhold Pub., New York. Pereira L.S.
  • Korukçu, A. & O. Yıldırım, 1981. Yağmurlama Sistemlerinin Projelenmesi. Topraksu Gn. Müd. Yayınları, Ankara.
  • Munson B.R., D.F. Young & T.H. Okiishi, 2006. Fundamentals of Fluid Mechanics. 6th Edition, J. Wiley and Sons.
  • Nir, D., 1982. Drip Irrigation. In: Finkel,H.J (Ed), Handbook of Irrigation Technology. Vol.1.CRC. Press, Inc., 2000 N.W. 24th Street, Boca Raton, Florida 33431.
  • Palau-Salvador, G., J. Arviza-Valverde & V. Bralts, 2004. Hydraulic flow behaviour through an in-line emitter labyrinth using CFD techniques. In: Proceedings of the ASAE/CSAE Annual International Meeting, 1-4 August, Ottawa, Canada, pp. 1-8. https://doi: 10.13031/2013.16437
  • Palau-Salvador G., L.H. Sanchis, P. González-Altozano & J. Arviza-Valverde, 2006. Real local losses estimation for on-line emitters using empirical and numerical procedures. Journal of Irrigation and Drainage Engineering ASCE, 132(6): 522–530. https://doi.org/10.1061/(ASCE)0733-9437(2006)132:6(522)
  • Philipova, N., N. Nikolov, G. Pichurov & D. Markov, 2009. A mathematical model of drip emitter discharge depending on the geometric parameters of a labyrinth channel. In: 11th National Congress on Theoretical and Applied Mechanics, 2-5 September, Borovets, Bulgaria, pp. 1-6.
  • Post, S.E.C., D.E. Peck, R. Abrenoler, N.J. Sakovich & L. Waddle, 1985. Evaluation of non-overlapping, low-flow sprinklers. Drip/Trickle Irrigation in Action, Proc. Third Inter'l. Drip/Trickle Irrig.Cong. 1: Pg.294-305, ASAE St.Joseph, Michigan, 49085.
  • Post, S.E.C., D.E. Peck, R. Abrenoler, N.J. Sakovich & L. Waddle, 1986. Evaluation of Low-Flow Sprinklers. California Agriculture, July-August, 27-29.
  • Provenzano, G., D. Pumo, P. Di Dio, J. Arviza-Valverde & G. Palau-Salvador, 2005. Assessing a computational fluid dynamics technique (CFD) to evaluate pressure losses in co-extruded drip laterals. In: Proceedings of the ASAE International Meeting, 17-20 July, Tampa Florida, Paper Number: 052212, pp. 1-12. https://doi:10.13031/2013.19030
  • Provenzano, G., P. Di Dio & G. Palau-Salvador, 2007. New computational fluid dynamic procedure to estimate friction and local losses in coextruded drip laterals. Journal of Irrigation and Drainage Engineering ASCE, 133(6): 520-527. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:6(520)
  • Singh, J., A.K. Singa, S. Jain, R. Gars & I.N. Nathur, 1990. Micro sprinklers performance evaluation and constraint for its adaption. XI. International Congress on the Use of Plastics in Agriculture Pg.B.79-B.87. New Delhi.
  • Türk Standardı, 2007. TS ISO 7749-1, Tarımsal Sulama Donanımları-Döner Yağmurlama Başlıkları Bölüm 1: Tasarım ve İşletme Kuralları. Türk Standardları Enstitüsü, Necatibey Caddesi No.112 Bakanlıklar/Ankara.
  • Vijiapurapu S. & J. Cui, 2010. Performance of turbulence models for flows through rough pipes. Applied Mathematical Modelling, 34(6): 1458-1466. https://doi.org/10.1016/j.apm.2009.08.029
  • Wang W., F. Wang & F. Zhao, 2006. Simulation of unsteady flow in labyrinth emitter of drip irrigation system. Computers in Agriculture and Natural Resources, 4th World Congress Conference, 24-26 July, Florida, ASABE Publication Number 701P0606, 630-635 pp.
  • Wang, L., Z. Zheng, Y. Wu, J. Guo, J. Zhang & C. Tang, 2009. Numerical and experimental study on liquid-solid flow in a hydrocyclone. Journal of Hydrodynamics, 21(3): 408-414. https://doi.org/10.1016/S1001-6058(08)60164-X
  • Wei Q., Y. Shi, W. Dong, G. Lu & S. Huang, 2006. Study on hydraulic performance of drip emitters by computational fluid dynamics. Agric. Water Management 84(1-2): 130-136. https://doi.org/10.1016/j.agwat.2006.01.016
  • Wu D., Y. K. Li, H.S. Liu, P.L. Yang, H.S. Sun & Y. Z. Liu, 2013. Simulation of the flow characteristics of a drip irrigation emitter with Large Eddy Methods. Mathematical and Computer Modelling, 58(3-4): 497-506. https://doi.org/10.1016/j.mcm.2011.10.074
  • Willmott, C. J. & K. Matsuura, 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30: 79–82. https://doi:10.3354/cr030079
  • Willmott, C. J., S. M. Robeson & K. Matsuura, 2012. A refined index of model performance. International Journal of Climatology, 32: 2088-2094. https://doi.org/10.1002/joc.2419
  • Yan, H., Y. Ou, K. Nakano & C. Xu, 2009. Numerical and experimental investigations on internal flow characteristic in the impact sprinkler. Irrig Drainage Syst, 23: 11-23. https://doi.org/10.1007/s10795-009-9061-2
  • Yerdani, A. & Z. Rubinstein, 1991. Development of Dynamic Mini-Sprinkler With High Clogging Resistance. Agroteam Consultans Ltd., P.O.B 116, Israel. 53-56 pp.
  • Zhang, J., W. Zhao, Z. Wei, Y. Tang & B. Lu, 2007. Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels. Computer and Electronics in Agriculture, 56(2): 120-129. https://doi.org/10.1016/j.compag.2007.01.007
  • Zhang, Y., B. Sun, H. Fang, D. Zhu, L. Yang & Z. Li, 2018. Experimental and simulation ınvestigation on the kinetic energy dissipation rate of a fixed spray-plate sprinkler. Water, 10(10): 1365, 1-13. https://doi.org/10.3390/w10101365

Mikro jet yağmurlama sulama başlığında akış özelliklerinin hesaplamalı akışkanlar dinamiği ile incelenmesi

Year 2022, Volume: 59 Issue: 1, 93 - 105, 30.03.2022
https://doi.org/10.20289/zfdergi.929494

Abstract

Amaç: Bu çalışmanın amacı, mikro jet yağmurlama sulama başlığında akış özelliklerinin Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemiyle ortaya konulması ve en uygun türbülans modelinin belirlenmesidir.
Materyal ve Yöntem: Çalışmada dört farklı meme çapına sahip mikro jet yağmurlama sulama başlığı ele alınmıştır. İlk aşamada, mikro jet yağmurlama sulama başlığının farklı basınçlardaki debi değerleri ve nominal çalışma basıncında (200 kPa) ıslatma çapları ölçülmüştür. İkinci aşamada farklı türbülans modelleri kullanılarak hesaplamalı akışkanlar dinamiği analiz yöntemiyle hesaplanan değerler, ölçüm değerleri ile karşılaştırılmıştır.
Araştırma Bulguları: Tüm meme çaplarının 200 kPa olan nominal çalışma basıncındaki debi değerleri, Reliz k-ε, Enh Wall türbülans modeli ile en yüksek %2.16 gibi oldukça düşük bir hata değeri ile tahmin edilmiştir. Ayrıca başlık meme çıkışı ve çarpma plakası bölgesindeki su dağılım simülasyonları deneysel değerlere oldukça yakın bulunmuştur.
Sonuç: Mikro jet sulama başlığının debi değeri Reliz k-ε, Enh Wall türbülans modeli kullanılarak çok düşük hata ile tahmin edilebileceği ve başlık meme tasarımının simülasyon kullanılarak hızlı ve kolay bir şekilde yapılabileceği ortaya konulmuştur.

References

  • ANSYS, 2016. Fluent Theory Guide, Release 17.2, ANSYS, Inc.
  • ANSYS, 2007. ANSYS Fluent Flow Lab1.2, ANSYS, Inc.
  • ASAE Standard, 1995. ASAE S398.1, Procedure for Sprinkler Testing and Performance Reporting. ASAE, St. Joseph, MI 49085.
  • Benami, A. & A. Ofen, 1993. Irrigation Engineering. Irrigation Engineering Scientific Publications, Hafia, Israel.
  • Bhaskar, K.U., Y.R. Murthy, M.R. Raju, S. Tiwari, J.K. Srivastava & N. Ramakrishnan, 2007. CFD simulation and experimental validation studies on hydrocyclone. Minerals Engineering, 20:60-71. https://doi.org/10.1016/j.mineng.2006.04.012
  • Boman, B. J., 1991. Micro tubing effects on microsprinkler discharge rates. Transactions of the ASAE, 34(1):51-56. https://doi: 10.13031/2013.31631
  • Demir, V., 1997. Mikro Sulama Sistemlerini Oluşturan Elemanların Teknik Özelliklerinin ve Bu Sistemlerdeki Sürtünme Kayıplarının Belirlenmesi Üzerine Bir Araştırma. Ege Üniversitesi Fen Bilimleri Enstitüsü, (Basılmamış) Doktora Tezi, İzmir, 211 s.
  • Demir, V., H. Yürdem, T. Günhan & A. Yazgı, 2017. Damla sulama sistemlerinde kullanilan hidrosiklon filtrelerde basınç kaybı ve ayırma etkinliğinin Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemi ile belirlenmesi. Tarım Makinaları Bilimi Dergisi, 13 (1): 55-67.
  • Demir, V., H. Yürdem, A. Yazgı & T. Günhan, 2020. Determination of the hydraulic properties of a flat type drip emitter using computational fluid dynamics. Tarım Bilimleri Dergisi - Journal of Agricultural Sciences, 26(2): 226-235. https://doi: 10.15832/ankutbd.492686
  • Demirel, Ç. & V. Demir, 2015. Mini yağmurlama sulama başlıklarının teknik özeliklerinin incelenmesi ve debi değerlerinin tahminlenmesinde kullanılabilecek bir matematiksel modelin geliştirilmesi. Anadolu Tarım Bilimleri Dergisi, 30 (2015): 118-125. https://doi: 10.7161/anajas.2015.30.2.118-125
  • Güngör, Y. & O. Yıldırım, 1989. Tarla Sulama Sistemleri. Ankara Üniversitesi Ziraat Fakültesi Yayınları, Ankara, No:1155, 325 s.
  • Hills, D.J., R.C.M. Silveria & W.W. Wallender, 1986. Oscillating pressure for improving application uniformity of spray emitters. Transactions of the ASAE, 29 (4):1080-1085. https://doi: 10.13031/2013.30273
  • Hsieh, K.T., 1988. Phenomenological Model of the Hydrocyclone, University of Utah, Dept. of Metallurgy and Metallurgical Engineering, Ph.D Thesis, Utah,143 pp.
  • ISO Standard, 1985. ISO 8026, Agricultural Irrigation Equipment - Sprayers - General Requirements and Test Methods. International Organization for Standardization.
  • Keller, J. & R. D. Bliesner, 1990. Sprinkler and Trickle Irrigation. An Avi Book, Van Nostrand Reinhold Pub., New York. Pereira L.S.
  • Korukçu, A. & O. Yıldırım, 1981. Yağmurlama Sistemlerinin Projelenmesi. Topraksu Gn. Müd. Yayınları, Ankara.
  • Munson B.R., D.F. Young & T.H. Okiishi, 2006. Fundamentals of Fluid Mechanics. 6th Edition, J. Wiley and Sons.
  • Nir, D., 1982. Drip Irrigation. In: Finkel,H.J (Ed), Handbook of Irrigation Technology. Vol.1.CRC. Press, Inc., 2000 N.W. 24th Street, Boca Raton, Florida 33431.
  • Palau-Salvador, G., J. Arviza-Valverde & V. Bralts, 2004. Hydraulic flow behaviour through an in-line emitter labyrinth using CFD techniques. In: Proceedings of the ASAE/CSAE Annual International Meeting, 1-4 August, Ottawa, Canada, pp. 1-8. https://doi: 10.13031/2013.16437
  • Palau-Salvador G., L.H. Sanchis, P. González-Altozano & J. Arviza-Valverde, 2006. Real local losses estimation for on-line emitters using empirical and numerical procedures. Journal of Irrigation and Drainage Engineering ASCE, 132(6): 522–530. https://doi.org/10.1061/(ASCE)0733-9437(2006)132:6(522)
  • Philipova, N., N. Nikolov, G. Pichurov & D. Markov, 2009. A mathematical model of drip emitter discharge depending on the geometric parameters of a labyrinth channel. In: 11th National Congress on Theoretical and Applied Mechanics, 2-5 September, Borovets, Bulgaria, pp. 1-6.
  • Post, S.E.C., D.E. Peck, R. Abrenoler, N.J. Sakovich & L. Waddle, 1985. Evaluation of non-overlapping, low-flow sprinklers. Drip/Trickle Irrigation in Action, Proc. Third Inter'l. Drip/Trickle Irrig.Cong. 1: Pg.294-305, ASAE St.Joseph, Michigan, 49085.
  • Post, S.E.C., D.E. Peck, R. Abrenoler, N.J. Sakovich & L. Waddle, 1986. Evaluation of Low-Flow Sprinklers. California Agriculture, July-August, 27-29.
  • Provenzano, G., D. Pumo, P. Di Dio, J. Arviza-Valverde & G. Palau-Salvador, 2005. Assessing a computational fluid dynamics technique (CFD) to evaluate pressure losses in co-extruded drip laterals. In: Proceedings of the ASAE International Meeting, 17-20 July, Tampa Florida, Paper Number: 052212, pp. 1-12. https://doi:10.13031/2013.19030
  • Provenzano, G., P. Di Dio & G. Palau-Salvador, 2007. New computational fluid dynamic procedure to estimate friction and local losses in coextruded drip laterals. Journal of Irrigation and Drainage Engineering ASCE, 133(6): 520-527. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:6(520)
  • Singh, J., A.K. Singa, S. Jain, R. Gars & I.N. Nathur, 1990. Micro sprinklers performance evaluation and constraint for its adaption. XI. International Congress on the Use of Plastics in Agriculture Pg.B.79-B.87. New Delhi.
  • Türk Standardı, 2007. TS ISO 7749-1, Tarımsal Sulama Donanımları-Döner Yağmurlama Başlıkları Bölüm 1: Tasarım ve İşletme Kuralları. Türk Standardları Enstitüsü, Necatibey Caddesi No.112 Bakanlıklar/Ankara.
  • Vijiapurapu S. & J. Cui, 2010. Performance of turbulence models for flows through rough pipes. Applied Mathematical Modelling, 34(6): 1458-1466. https://doi.org/10.1016/j.apm.2009.08.029
  • Wang W., F. Wang & F. Zhao, 2006. Simulation of unsteady flow in labyrinth emitter of drip irrigation system. Computers in Agriculture and Natural Resources, 4th World Congress Conference, 24-26 July, Florida, ASABE Publication Number 701P0606, 630-635 pp.
  • Wang, L., Z. Zheng, Y. Wu, J. Guo, J. Zhang & C. Tang, 2009. Numerical and experimental study on liquid-solid flow in a hydrocyclone. Journal of Hydrodynamics, 21(3): 408-414. https://doi.org/10.1016/S1001-6058(08)60164-X
  • Wei Q., Y. Shi, W. Dong, G. Lu & S. Huang, 2006. Study on hydraulic performance of drip emitters by computational fluid dynamics. Agric. Water Management 84(1-2): 130-136. https://doi.org/10.1016/j.agwat.2006.01.016
  • Wu D., Y. K. Li, H.S. Liu, P.L. Yang, H.S. Sun & Y. Z. Liu, 2013. Simulation of the flow characteristics of a drip irrigation emitter with Large Eddy Methods. Mathematical and Computer Modelling, 58(3-4): 497-506. https://doi.org/10.1016/j.mcm.2011.10.074
  • Willmott, C. J. & K. Matsuura, 2005. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 30: 79–82. https://doi:10.3354/cr030079
  • Willmott, C. J., S. M. Robeson & K. Matsuura, 2012. A refined index of model performance. International Journal of Climatology, 32: 2088-2094. https://doi.org/10.1002/joc.2419
  • Yan, H., Y. Ou, K. Nakano & C. Xu, 2009. Numerical and experimental investigations on internal flow characteristic in the impact sprinkler. Irrig Drainage Syst, 23: 11-23. https://doi.org/10.1007/s10795-009-9061-2
  • Yerdani, A. & Z. Rubinstein, 1991. Development of Dynamic Mini-Sprinkler With High Clogging Resistance. Agroteam Consultans Ltd., P.O.B 116, Israel. 53-56 pp.
  • Zhang, J., W. Zhao, Z. Wei, Y. Tang & B. Lu, 2007. Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels. Computer and Electronics in Agriculture, 56(2): 120-129. https://doi.org/10.1016/j.compag.2007.01.007
  • Zhang, Y., B. Sun, H. Fang, D. Zhu, L. Yang & Z. Li, 2018. Experimental and simulation ınvestigation on the kinetic energy dissipation rate of a fixed spray-plate sprinkler. Water, 10(10): 1365, 1-13. https://doi.org/10.3390/w10101365
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Articles
Authors

Vedat Demir 0000-0001-8341-9672

Hüseyin Yürdem 0000-0003-2711-2697

Arzu Yazgı 0000-0003-0141-8882

Tuncay Günhan 0000-0003-4462-2410

Early Pub Date March 28, 2022
Publication Date March 30, 2022
Submission Date April 30, 2021
Acceptance Date July 12, 2021
Published in Issue Year 2022 Volume: 59 Issue: 1

Cite

APA Demir, V., Yürdem, H., Yazgı, A., Günhan, T. (2022). Mikro jet yağmurlama sulama başlığında akış özelliklerinin hesaplamalı akışkanlar dinamiği ile incelenmesi. Journal of Agriculture Faculty of Ege University, 59(1), 93-105. https://doi.org/10.20289/zfdergi.929494

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.