Review
BibTex RIS Cite

The Production The Properties and Consumption of Camelina Biodisel

Year 2019, Issue: 367, 36 - 53, 26.09.2019
https://doi.org/10.33724/zm.572710

Abstract

Increasing energy demand due to global
population growth, decreasing fossil fuel reserves and environmental concerns
resulted with the necessity of obtaining renewable and sustainable alternative
energy sources from non-food products. Biodiesel, a renewable, non-toxic and
biodegradable fuel type, can be used in diesel engines without engine
modifications. But bioenergy production can compete with production of food and
fodder crops in agricultural areas, which can result in increased food prices
and potentially significant economic destabilization. Therefore, it has been
proposed to use marginal agricultural areas for the production of bioenergy raw
materials. Seeds of Camelina (False flax) (Camelina sativa), which is well
adopted to marginal areas, have started to be prominent crop in recent years as
a suitable source for biofuels. The high oil content (25-48%) and low
production costs are important advantages of camelina. Fuel characteristics of camelina
biodiesel have been shown to be suitable for ASTM D6751 and EN 14214 Standards
in many respects. Motor power generation of >2000 rpm, is higher than that of
mineral fuels. Camelina produces lower CO and CO2 than biodiesel
mineral fuels. EPDK authority of Turkey mandates to blend diesel fuel with at
least 0.5% biodiesel by the year 2018. The annual diesel consumption in Turkey
is close to 29.106 m3 and it is estimated that 145.103
m3 biodiesel is required to mix with petrodiesel.



In this review, we present a summary
of internationally conducted studies on the characteristics, consumption,
standards and environmental impacts of the camelina biodisel.

References

  • Abramovic, H., & Abram, V. 2005. Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol. Biotechnol, 43(1), 63-70.
  • Acharjee, T. C. 2011. Exploring the Potential Use of Camelina sativa as a Biofuel crop for Nevada. University of Nevada, Reno.
  • ASTM, 2008. Standard specification for diesel fuel oil, biodiesel blend (B6 to B20), Method D7467-08a. In ‘Annual Book of ASTM Standards’. (ASTM International: West Conshohocken, PA).
  • Atadashi, I. M. 2015. Purification of crude biodiesel using dry washing and membrane technologies.Alexandria Engineering Journal, 54(4), 1265-1272.
  • Atadashi, I. M., Aroua, M. K., & Aziz, A. A. 2011. Biodiesel separation and purification: a review. Renewable Energy, 36(2), 437-443.
  • Atadashi, I. M., Aroua, M. K., Aziz, A. A., & Sulaiman, N. M. N. 2013. The effects of catalysts in biodiesel production: A review. Journal of industrial and engineering chemistry,19(1), 14-26.
  • Ayaşan, T. 2014. Ketencik Bitkisinin (Camelia sativa) Kanatlı Beslenmesinde Kullanılması. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 17(2), 10-13.
  • Bernardo, A., Howard-Hildige, R., O'Connell, A., Nichol, R., Ryan, J., Rice, B., & Leahy, J. J. 2003. Camelina oil as a fuel for diesel transport engines. Industrial Crops and Products, 17(3), 191-197.
  • Bondioli, P., Gasparoli, A., Lanzani, A., Fedeli, E., Veronese, S., & Sala, M. 1995. Storage stability of biodiesel. Journal of the American Oil Chemists’ Society, 72(6), 699-702.
  • Bouchy, C., Hastoy, G., Guillon, E., & Martens, J. A. 2009. Fischer-Tropsch waxes upgrading via hydrocracking and selective hydroisomerization. Oil & Gas Science and Technology-Revue de l'IFP, 64(1), 91-112.
  • Campbell, M. C., Rossi, A. F., & Erskine, W. 2013. Camelina (Camelina sativa (L.) Crantz): agronomic potential in Mediterranean environments and diversity for biofuel and food uses. Crop and Pasture Science, 64(4), 388-398.
  • Çanakci, M., & Şanlı, H. 2008. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of industrial microbiology & biotechnology, 35(5), 431-441.
  • Ciubota-Rosie, C., Ruiz, J. R., Ramos, M. J., & Pérez, Á. 2013. Biodiesel from Camelina sativa: a comprehensive characterisation. Fuel, 105, 572-577.
  • CODEX, S. 2005. STAN 210-1999. Codex standard for named vegetable oil. Codex Alimentarius. Amendment, 2011, 2013.
  • Crowley, J. G., & Fröhlich, A. 1998. Factors affecting the composition and use of camelina. Teagasc.
  • Dunn, R. O. 2005. Oxidative stability of soybean oil fatty acid methyl esters by oil stability index (OSI). Journal of the American Oil Chemists' Society, 82(5), 381-387.
  • Dunn, R. O. 2008. Antioxidants for improving storage stability of biodiesel. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy, 2(4), 304-318.
  • Falasca, S. L., del Fresno, M. C., & Waldman, C. 2014. Developing an agro-climatic zoning model to determine potential growing areas for Camelina sativa in Argentina. QScience Connect, 4.
  • Fernández, C. M., Ramos, M. J., Pérez, Á., & Rodríguez, J. F. 2010. Production of biodiesel from winery waste: extraction, refining and transesterification of grape seed oil. Bioresource technology, 101(18), 7019-7024.
  • Frohlich, A., & Rice, B. 2005. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Industrial crops and products, 21(1), 25-31.
  • Ghamkhar, K., Croser, J., Aryamanesh, N., Campbell, M., Kon’kova, N., & Francis, C. 2010. Camelina sativa (L.) Crantz as an alternative oilseed: molecular and ecogeographic analyses. Genome, 53(7), 558-567.
  • Giampietro, M., Ulgiati, S., & Pimentel, D. 1997. Feasibility of large-scale biofuel production. BioScience, 47(9), 587-600.
  • Gui, M. M., Lee, K. T., & Bhatia, S. 2008. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 33(11), 1646-1653.
  • Hrastar, R., Abramovič, H., & Košir, I. J. 2012. In situ quality evaluation of Camelina sativa landrace. European Journal of Lipid Science and Technology, 114(3), 343-351.
  • Hu, Z., Wu, Q., Dalal, J., Vasani, N., Lopez, H. O., Sederoff, H. W., & Qu, R. (2017). Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa. PloS one, 12(2), e0172296.
  • Kagale, S., Koh, C., Nixon, J., Bollina, V., Clarke, W. E., Tuteja, R., & Higgins, E. E. 2014. The emerging biofuel crop Camelina retains a highly undifferentiated hexaploid genome structure. Nature communications, 5, 3706.
  • Karvonen, H. M., Aro, A., Tapola, N. S., Salminen, I., Uusitupa, M. I., & Sarkkinen, E. S. 2002. Effect of [alpha]-linolenic acid [ndash] rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects. Metabolism-Clinical and Experimental, 51(10), 1253-1260.
  • Kawashima, A., Matsubara, K., & Honda, K. 2009. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresource Technology, 100(2), 696-700.
  • Kim, N., Li, Y., & Sun, X. S. 2015. Epoxidation of Camelina sativa oil and peel adhesion properties. Industrial Crops and Products, 64, 1-8.
  • Knothe, G. 2006. Analysis of oxidized biodiesel by 1H‐NMR and effect of contact area with air. European journal of lipid science and technology,108(6), 493-500.
  • Knothe, G. 2007. Some aspects of biodiesel oxidative stability. Fuel Processing Technology, 88(7), 669-677.
  • Knothe, G. 2008. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy & Fuels, 22(2), 1358-1364.
  • Lebedevas, S., Lebedeva, G., Makarevičiene, V., Kazanceva, I., & Kazancev, K. 2010. Analysis of the ecological parameters of the diesel engine powered with biodiesel fuel containing methyl esters from Camelina sativa oil. Transport, 25(1), 22-28.
  • Lingfeng, C., Guomin, X., Bo, X., & Guangyuan, T. 2007. Transesterification of cottonseed oil to biodiesel by using heterogeneous solid basic catalysts. Energy & Fuels, 21(6), 3740-3743.
  • Lošák, T., Hlusek, J., Martinec, J., Vollmann, J., Peterka, J., Filipcik, R., & Martensson, A. (2011). Effect of combined nitrogen and sulphur fertilization on yield and qualitative parameters of Camelina sativa [L.] Crtz.(false flax). Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 61(4), 313-321.
  • Ma, F., & Hanna, M. A. 1999. Biodiesel production: a review. Bioresource technology, 70(1), 1-15.
  • Manuel, J. 2007. Battle of the biofuels. Environmental health perspectives, 115(2), A92.
  • Mittelbach, M., & Remschmidt, C. 2004. Biodiesel. The compherensive handbook (No. L-0577).
  • Mootabadi, H., Salamatinia, B., Bhatia, S., & Abdullah, A. Z. 2010. Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel, 89(8), 1818-1825.
  • Moser, B. R., & Vaughn, S. F. 2010. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, 101(2), 646-653.
  • OECD, 2019. OECD Stats - OECD-FAO agricultural outlook 2018–2027 MetaData: biofuel. OECD-FAO Agricultural Outlook 2011–2020, https://stats.oecd.org/index.aspx?queryid=30104 (Erişim 22.01.2019).
  • Özçelik, A.E., Aydoğan, H., Acaroğlu, M., 2015. Determining the performance, emission and combustion properties of camelina biodiesel blends, Elsevier, Selçuk Üniversitesi, Energy Conversion and Management 96.47–57.
  • Patil, P. D., & Deng, S. 2009. Transesterification of camelina sativa oil using heterogeneous metal oxide catalysts. Energy & Fuels, 23(9), 4619-4624.
  • Rashid, U., Anwar, F., Moser, B. R., & Ashraf, S. 2008. Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and bioenergy, 32(12), 1202-1205.
  • Rode, J. 2002. Study of autochthon Camelina sativa (L.) Crantz in Slovenia. Journal of herbs, spices & medicinal plants, 9(4), 313-318.
  • Sahapatsombut, U., & Suppapitnarm, A. 2006. Assessment of new potential crops–Jatropha curcas and Camelina sativa for sustainable energy resources in Thailand. In International Conference on Green and Sustainable Innovation, Thailand.
  • Sainger, M., Jaiwal, A., Sainger, P. A., Chaudhary, D., Jaiwal, R., & Jaiwal, P. K. 2017. Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products. Renewable and Sustainable Energy Reviews, 68, 623-637.
  • Séguin-Swartz, G., Eynck, C., Gugel, R. K., Strelkov, S. E., Olivier, C. Y., Li, J. L., & Falk, K. C. 2009. Diseases of Camelina sativa (false flax). Canadian Journal of Plant Pathology, 31(4), 375-386.
  • Serra, T., & Zilberman, D. 2013. Biofuel-related price transmission literature: A review. Energy Economics, 37, 141-151.
  • Shonnard, D. R., Williams, L., & Kalnes, T. N. 2010. Camelina‐derived jet fuel and diesel: Sustainable advanced biofuels. Environmental Progress & Sustainable Energy, 29(3), 382-392.
  • Singh, R., Bollina, V., Higgins, E. E., Clarke, W. E., Eynck, C., Sidebottom, C., & Parkin, I. A. 2015. Single-nucleotide polymorphism identification and genotyping in Camelina sativa. Molecular breeding, 35(1), 35.
  • Soriano Jr, N. U., & Narani, A. 2012. Evaluation of biodiesel derived from Camelina sativa oil.Journal of the American Oil Chemists' Society, 89(5), 917-923.
  • Stojković, I. J., Stamenković, O. S., Povrenović, D. S., & Veljković, V. B. 2014. Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 32, 1-15.
  • Şimşek, R., ve Aydoğan, H. 2016. “Ketencik Biyodizelinin Üretimi ve Common Rail Enjeksiyon Sistemli Bir Motorun Emisyonlarına Etkisi”. Uluslararası Yakıtlar, Yanma ve Yangın Dergisi, Sayı (4), 60-64.
  • Tanabe, K., & Hölderich, W. F. 1999. Industrial application of solid acid–base catalysts. Applied Catalysis A: General, 181(2), 399-434.
  • UNEP, 2009. Towards Sustainable Production and Use of Resources: Assessing Biofuels. United Nations Environment Programme, Nairobi.
  • Wu, X., & Leung, D. Y. 2011. Optimization of biodiesel production from camelina oil using orthogonal experiment. Applied Energy, 88(11), 3615-3624.
  • Yang, J. 2016. Evaluating The Feasibility of Biodiesel Production from Camelina Sativa.
  • Zaleckas, E., Makarevičienė, V., & Sendžikienė, E. 2012. Possibilities of using Camelina sativa oil for producing biodiesel fuel. Transport, 27(1), 60-66.
  • Zubr, J. 1997. Oil-seed crop: Camelina sativa. Industrial crops and products, 6(2), 113-119.
  • Zubr, J. 2003. Qualitative variation of Camelina sativa seed from different locations. Industrial Crops and Products, 17(3), 161-169.

KETENCİK BİYODİZELİNİN ELDESİ İLE ÖZELLİKLERİ VE KULLANIM ALANLARI

Year 2019, Issue: 367, 36 - 53, 26.09.2019
https://doi.org/10.33724/zm.572710

Abstract

Küresel nüfus artışına bağlı olarak sürekli
artan enerji talebi, azalan fosil yakıt rezervleri ve çevresel kaygılar; gıda
dışı ürünlerden yenilenebilir ve sürdürülebilir alternatif enerji kaynakları
elde edilmesi zorunluluğu ortaya çıkmıştır. Yenilenebilir, toksik olmayan ve
biyo-bozunur bir yakıt olan biyodizel, motor modifikasyonları olmadan dizel
motorlarda kullanılabilmektedir. Fakat biyoenerji hammadde bitkileri, tarımsal
alanlarda gıda ve yem bitkileri ile rekabet edebilir ki bu, gıda fiyatlarının
artması ve potansiyel olarak önemli ekonomik istikrarsızlaşma sonuçlarına neden
olabilir. Bu nedenle, biyoenerji hammaddeleri üretimi için marjinal tarım alanlarının
kullanılması önerilmiştir. Marjinal alanlara çok uygun olan ketencik (Camelina sativa) bitkisinin tohumları
önemli bir biyoyakıt kaynağı olarak son yıllarda öne çıkmaya başlamıştır.
Ketencik tohumlarının yüksek yağ içeriği (%25-48) ve üretim maliyetinin düşük
olması önemli bir avantajdır. Ketencik biyodizelinin yakıt özellikleri ASTM
D6751 ve EN 14214 standartlarına birçok açıdan uygun olduğu gösterilmiştir. Motor
güç üretimi, >2000 d/d’da mineral yakıtlara göre daha yüksek seviyededir. Ketencik
biyodizeli mineral yakıtlara göre daha düşük CO ve CO2 üretmektedir.
Türkiye’de EPDK motorine en az %0.5 biyodizel harmanlamasını 2018 yılı
itibariyle zorunlu kılmıştır. Türkiye’de yıllık motorin tüketimi 29.106
m3 olup bunun için 145.103 m3 biyodizele
ihtiyaç olduğu hesaplanmıştır.



Bu derlemede, konu araştırıcılarına,
ketenciğin biyoyakıta dönüştürülmesi, elde edilen yakıtın özellikleri, kullanım
alanları, standartları ve çevresel etkisi konusunda uluslararası alanda
yapılmış çalışmaların bir özeti sunulmuştur.

References

  • Abramovic, H., & Abram, V. 2005. Physico-chemical properties, composition and oxidative stability of Camelina sativa oil. Food Technol. Biotechnol, 43(1), 63-70.
  • Acharjee, T. C. 2011. Exploring the Potential Use of Camelina sativa as a Biofuel crop for Nevada. University of Nevada, Reno.
  • ASTM, 2008. Standard specification for diesel fuel oil, biodiesel blend (B6 to B20), Method D7467-08a. In ‘Annual Book of ASTM Standards’. (ASTM International: West Conshohocken, PA).
  • Atadashi, I. M. 2015. Purification of crude biodiesel using dry washing and membrane technologies.Alexandria Engineering Journal, 54(4), 1265-1272.
  • Atadashi, I. M., Aroua, M. K., & Aziz, A. A. 2011. Biodiesel separation and purification: a review. Renewable Energy, 36(2), 437-443.
  • Atadashi, I. M., Aroua, M. K., Aziz, A. A., & Sulaiman, N. M. N. 2013. The effects of catalysts in biodiesel production: A review. Journal of industrial and engineering chemistry,19(1), 14-26.
  • Ayaşan, T. 2014. Ketencik Bitkisinin (Camelia sativa) Kanatlı Beslenmesinde Kullanılması. Kahramanmaraş Sütçü İmam Üniversitesi Doğa Bilimleri Dergisi, 17(2), 10-13.
  • Bernardo, A., Howard-Hildige, R., O'Connell, A., Nichol, R., Ryan, J., Rice, B., & Leahy, J. J. 2003. Camelina oil as a fuel for diesel transport engines. Industrial Crops and Products, 17(3), 191-197.
  • Bondioli, P., Gasparoli, A., Lanzani, A., Fedeli, E., Veronese, S., & Sala, M. 1995. Storage stability of biodiesel. Journal of the American Oil Chemists’ Society, 72(6), 699-702.
  • Bouchy, C., Hastoy, G., Guillon, E., & Martens, J. A. 2009. Fischer-Tropsch waxes upgrading via hydrocracking and selective hydroisomerization. Oil & Gas Science and Technology-Revue de l'IFP, 64(1), 91-112.
  • Campbell, M. C., Rossi, A. F., & Erskine, W. 2013. Camelina (Camelina sativa (L.) Crantz): agronomic potential in Mediterranean environments and diversity for biofuel and food uses. Crop and Pasture Science, 64(4), 388-398.
  • Çanakci, M., & Şanlı, H. 2008. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of industrial microbiology & biotechnology, 35(5), 431-441.
  • Ciubota-Rosie, C., Ruiz, J. R., Ramos, M. J., & Pérez, Á. 2013. Biodiesel from Camelina sativa: a comprehensive characterisation. Fuel, 105, 572-577.
  • CODEX, S. 2005. STAN 210-1999. Codex standard for named vegetable oil. Codex Alimentarius. Amendment, 2011, 2013.
  • Crowley, J. G., & Fröhlich, A. 1998. Factors affecting the composition and use of camelina. Teagasc.
  • Dunn, R. O. 2005. Oxidative stability of soybean oil fatty acid methyl esters by oil stability index (OSI). Journal of the American Oil Chemists' Society, 82(5), 381-387.
  • Dunn, R. O. 2008. Antioxidants for improving storage stability of biodiesel. Biofuels, Bioproducts and Biorefining: Innovation for a sustainable economy, 2(4), 304-318.
  • Falasca, S. L., del Fresno, M. C., & Waldman, C. 2014. Developing an agro-climatic zoning model to determine potential growing areas for Camelina sativa in Argentina. QScience Connect, 4.
  • Fernández, C. M., Ramos, M. J., Pérez, Á., & Rodríguez, J. F. 2010. Production of biodiesel from winery waste: extraction, refining and transesterification of grape seed oil. Bioresource technology, 101(18), 7019-7024.
  • Frohlich, A., & Rice, B. 2005. Evaluation of Camelina sativa oil as a feedstock for biodiesel production. Industrial crops and products, 21(1), 25-31.
  • Ghamkhar, K., Croser, J., Aryamanesh, N., Campbell, M., Kon’kova, N., & Francis, C. 2010. Camelina sativa (L.) Crantz as an alternative oilseed: molecular and ecogeographic analyses. Genome, 53(7), 558-567.
  • Giampietro, M., Ulgiati, S., & Pimentel, D. 1997. Feasibility of large-scale biofuel production. BioScience, 47(9), 587-600.
  • Gui, M. M., Lee, K. T., & Bhatia, S. 2008. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 33(11), 1646-1653.
  • Hrastar, R., Abramovič, H., & Košir, I. J. 2012. In situ quality evaluation of Camelina sativa landrace. European Journal of Lipid Science and Technology, 114(3), 343-351.
  • Hu, Z., Wu, Q., Dalal, J., Vasani, N., Lopez, H. O., Sederoff, H. W., & Qu, R. (2017). Accumulation of medium-chain, saturated fatty acyl moieties in seed oils of transgenic Camelina sativa. PloS one, 12(2), e0172296.
  • Kagale, S., Koh, C., Nixon, J., Bollina, V., Clarke, W. E., Tuteja, R., & Higgins, E. E. 2014. The emerging biofuel crop Camelina retains a highly undifferentiated hexaploid genome structure. Nature communications, 5, 3706.
  • Karvonen, H. M., Aro, A., Tapola, N. S., Salminen, I., Uusitupa, M. I., & Sarkkinen, E. S. 2002. Effect of [alpha]-linolenic acid [ndash] rich Camelina sativa oil on serum fatty acid composition and serum lipids in hypercholesterolemic subjects. Metabolism-Clinical and Experimental, 51(10), 1253-1260.
  • Kawashima, A., Matsubara, K., & Honda, K. 2009. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresource Technology, 100(2), 696-700.
  • Kim, N., Li, Y., & Sun, X. S. 2015. Epoxidation of Camelina sativa oil and peel adhesion properties. Industrial Crops and Products, 64, 1-8.
  • Knothe, G. 2006. Analysis of oxidized biodiesel by 1H‐NMR and effect of contact area with air. European journal of lipid science and technology,108(6), 493-500.
  • Knothe, G. 2007. Some aspects of biodiesel oxidative stability. Fuel Processing Technology, 88(7), 669-677.
  • Knothe, G. 2008. “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy & Fuels, 22(2), 1358-1364.
  • Lebedevas, S., Lebedeva, G., Makarevičiene, V., Kazanceva, I., & Kazancev, K. 2010. Analysis of the ecological parameters of the diesel engine powered with biodiesel fuel containing methyl esters from Camelina sativa oil. Transport, 25(1), 22-28.
  • Lingfeng, C., Guomin, X., Bo, X., & Guangyuan, T. 2007. Transesterification of cottonseed oil to biodiesel by using heterogeneous solid basic catalysts. Energy & Fuels, 21(6), 3740-3743.
  • Lošák, T., Hlusek, J., Martinec, J., Vollmann, J., Peterka, J., Filipcik, R., & Martensson, A. (2011). Effect of combined nitrogen and sulphur fertilization on yield and qualitative parameters of Camelina sativa [L.] Crtz.(false flax). Acta Agriculturae Scandinavica, Section B-Soil & Plant Science, 61(4), 313-321.
  • Ma, F., & Hanna, M. A. 1999. Biodiesel production: a review. Bioresource technology, 70(1), 1-15.
  • Manuel, J. 2007. Battle of the biofuels. Environmental health perspectives, 115(2), A92.
  • Mittelbach, M., & Remschmidt, C. 2004. Biodiesel. The compherensive handbook (No. L-0577).
  • Mootabadi, H., Salamatinia, B., Bhatia, S., & Abdullah, A. Z. 2010. Ultrasonic-assisted biodiesel production process from palm oil using alkaline earth metal oxides as the heterogeneous catalysts. Fuel, 89(8), 1818-1825.
  • Moser, B. R., & Vaughn, S. F. 2010. Evaluation of alkyl esters from Camelina sativa oil as biodiesel and as blend components in ultra low-sulfur diesel fuel. Bioresource Technology, 101(2), 646-653.
  • OECD, 2019. OECD Stats - OECD-FAO agricultural outlook 2018–2027 MetaData: biofuel. OECD-FAO Agricultural Outlook 2011–2020, https://stats.oecd.org/index.aspx?queryid=30104 (Erişim 22.01.2019).
  • Özçelik, A.E., Aydoğan, H., Acaroğlu, M., 2015. Determining the performance, emission and combustion properties of camelina biodiesel blends, Elsevier, Selçuk Üniversitesi, Energy Conversion and Management 96.47–57.
  • Patil, P. D., & Deng, S. 2009. Transesterification of camelina sativa oil using heterogeneous metal oxide catalysts. Energy & Fuels, 23(9), 4619-4624.
  • Rashid, U., Anwar, F., Moser, B. R., & Ashraf, S. 2008. Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass and bioenergy, 32(12), 1202-1205.
  • Rode, J. 2002. Study of autochthon Camelina sativa (L.) Crantz in Slovenia. Journal of herbs, spices & medicinal plants, 9(4), 313-318.
  • Sahapatsombut, U., & Suppapitnarm, A. 2006. Assessment of new potential crops–Jatropha curcas and Camelina sativa for sustainable energy resources in Thailand. In International Conference on Green and Sustainable Innovation, Thailand.
  • Sainger, M., Jaiwal, A., Sainger, P. A., Chaudhary, D., Jaiwal, R., & Jaiwal, P. K. 2017. Advances in genetic improvement of Camelina sativa for biofuel and industrial bio-products. Renewable and Sustainable Energy Reviews, 68, 623-637.
  • Séguin-Swartz, G., Eynck, C., Gugel, R. K., Strelkov, S. E., Olivier, C. Y., Li, J. L., & Falk, K. C. 2009. Diseases of Camelina sativa (false flax). Canadian Journal of Plant Pathology, 31(4), 375-386.
  • Serra, T., & Zilberman, D. 2013. Biofuel-related price transmission literature: A review. Energy Economics, 37, 141-151.
  • Shonnard, D. R., Williams, L., & Kalnes, T. N. 2010. Camelina‐derived jet fuel and diesel: Sustainable advanced biofuels. Environmental Progress & Sustainable Energy, 29(3), 382-392.
  • Singh, R., Bollina, V., Higgins, E. E., Clarke, W. E., Eynck, C., Sidebottom, C., & Parkin, I. A. 2015. Single-nucleotide polymorphism identification and genotyping in Camelina sativa. Molecular breeding, 35(1), 35.
  • Soriano Jr, N. U., & Narani, A. 2012. Evaluation of biodiesel derived from Camelina sativa oil.Journal of the American Oil Chemists' Society, 89(5), 917-923.
  • Stojković, I. J., Stamenković, O. S., Povrenović, D. S., & Veljković, V. B. 2014. Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 32, 1-15.
  • Şimşek, R., ve Aydoğan, H. 2016. “Ketencik Biyodizelinin Üretimi ve Common Rail Enjeksiyon Sistemli Bir Motorun Emisyonlarına Etkisi”. Uluslararası Yakıtlar, Yanma ve Yangın Dergisi, Sayı (4), 60-64.
  • Tanabe, K., & Hölderich, W. F. 1999. Industrial application of solid acid–base catalysts. Applied Catalysis A: General, 181(2), 399-434.
  • UNEP, 2009. Towards Sustainable Production and Use of Resources: Assessing Biofuels. United Nations Environment Programme, Nairobi.
  • Wu, X., & Leung, D. Y. 2011. Optimization of biodiesel production from camelina oil using orthogonal experiment. Applied Energy, 88(11), 3615-3624.
  • Yang, J. 2016. Evaluating The Feasibility of Biodiesel Production from Camelina Sativa.
  • Zaleckas, E., Makarevičienė, V., & Sendžikienė, E. 2012. Possibilities of using Camelina sativa oil for producing biodiesel fuel. Transport, 27(1), 60-66.
  • Zubr, J. 1997. Oil-seed crop: Camelina sativa. Industrial crops and products, 6(2), 113-119.
  • Zubr, J. 2003. Qualitative variation of Camelina sativa seed from different locations. Industrial Crops and Products, 17(3), 161-169.
There are 61 citations in total.

Details

Primary Language Turkish
Subjects Agricultural Engineering
Journal Section Makaleler
Authors

Mehmet Emin Bilgili 0000-0002-4191-0540

Uğur Sevilmiş This is me 0000-0003-3820-8387

Seyithan Seydoşoğlu 0000-0002-3711-3733

Şerif Kahraman 0000-0003-1160-0792

Deniz Sevilmiş

Publication Date September 26, 2019
Submission Date May 31, 2019
Acceptance Date August 5, 2019
Published in Issue Year 2019 Issue: 367

Cite

APA Bilgili, M. E., Sevilmiş, U., Seydoşoğlu, S., Kahraman, Ş., et al. (2019). KETENCİK BİYODİZELİNİN ELDESİ İLE ÖZELLİKLERİ VE KULLANIM ALANLARI. Ziraat Mühendisliği(367), 36-53. https://doi.org/10.33724/zm.572710