Araştırma Makalesi
BibTex RIS Kaynak Göster

İnaktive Edilmiş Streptococcus iniae, Edwardsiella tarda ve Poly I:C'nin Japon Pisi Balığındaki CXCL-10 ve CXCL-9 Geninin mRNA Ekspresyon Seviyeleri Üzerindeki Etkileri

Yıl 2024, , 128 - 139, 01.06.2024
https://doi.org/10.22392/actaquatr.1312305

Öz

Bu çalışma, Japon pisi balığının (Paralichthys olivaceus) dalak cDNA'sında JfCXCL9_L ve JfCXCL10_L genlerinin başarılı bir şekilde klonlandığını ve dizilendiğini bildirmektedir. Bu iki genin dokulardaki dağılımları da herhangi bir stimulant uygulanmadan önce (0h) belirlenmiştir. Ayrıca, qRT-PCR analizi, JfCXCL10_L ekspresyonlarının IL1-β ile benzerlik gösterdiğini ortaya koymuştur. Poly I:C ve formalinle öldürülmüş Edwardsiella tarda (FKCET) uygulamasından sonra artan ekspresyon seviyesi gösterirken, formalinle öldürülmüş Streptococcus iniae (FKCSI) uygulamasından sonra azalan ekpresyon seviyesi tespit edilmiştir. Bu durum, JfCXCL10_L'nin viral ve gram-negatif bakteriyel uyarılara karşı bağışıklık tepkisinde rolü olduğunu düşündürmektedir. JfCXCL9_L mRNA düzeyleri, FKCET ve FKCSI uygulamalarından sonra anlamlı derecede düşmüştür. Özellikle belirli zaman noktalarında, JfCXCL9_L düzeyleri Poly I:C uygulamasına kıyasla daha düşük bulunmuştur. Bu bulgular, JfCXCL9_L ve JfCXCL10_L'nin Japon pisi balığında bağışıklık tepkisi mekanizmaları ve potansiyel işlevleri konusunda bilgi sunmaktadır.

Kaynakça

  • Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124, 783–801. https://doi.org/10.1016/j.cell.2006.02.015
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Innate immunity. In Molecular Biology of the Cell, 4th edition., Garland Science, New York, NY, USA.
  • Alexopoulou, L., Czopik Holt, A., Medzhitov, R., & Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3. Nature, 413, 732–738. https://doi.org/10.1038/35099560
  • Boison, S. A., Gjerde, B., Hillestad, B., & Moghadam, H. K. (2019). Genomic and Transcriptomic Analysis of Amoebic Gill Disease Resistance in Atlantic Salmon (Salmo salar L.). Frontiers in Genetics, 10, 66. https://doi.org/10.3389/fgene.2019.00068
  • Bonecchi, R., Bianchi, G., Bordignon, P. P., D'Ambrosio, D., Lang, R., & Borsatti, A. (1998). Differential Expression of Chemokine Receptors and Chemotactic Responsiveness of Type 1 T Helper Cells (Th1s) and Th2s. Journal of Experimental Medicine, 181(7), 129–134. https://doi.org/10.1084/jem.187.1.129
  • Chen, J., Xu, Q., Wang, T., Collet, B., Corripio-Miyar, Y., Bird, S., Xie, P., Nie, P., Secombes, C. J., & Zou, J. (2013). Phylogenetic analysis of vertebrate CXC chemokines reveals novel lineage specific groups in teleost fish, Developmental & Comparative Immunology, 41, 137–152. https://doi.org/10.1016/j.dci.2013.05.006
  • Cole, K. E., Strick, C. A., Paradis, T. J., Ogborne, K. T., Loetscher, M., Gladue, R. P., Lin, W., Boyd, J. G., Moser, B., Wood, D. E., Sahagan, B. G., & Neote, K. (1998). Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. Journal of Experimental Medicine, 187(12), 2009-2021. https://doi.org/10.1084/jem.187.12.2009
  • Ding, Q., Lu, P., Xia, Y., Ding, S., Fan, Y., Li, X., Han, P., Liu, J., Tian, D., & Liu. M. (2016). CXCL9: evidence and contradictions for its role in tumor progression. Cancer Med., 5(11), 3246-3259. https://doi.org/10.1002/cam4.934
  • Don, S., Ohtani, M., Hikima, J., Sung, T., Kondo, H., Hirono, I., & Aoki, T. (2012). Molecular cloning and characterization of Toll-like receptor 3 in Japanese flounder, Paralichthys olivaceus. Developmental & Comparative Immunology, 37, 87–96. https://doi.org/10.1016/j.dci.2011.12.004
  • Dumrongphol, Y., Hirota, T., Kondo, H., Aoki, T., & Hirono I. (2009). Identification of novel genes in Japanese flounder (Paralichthys olivaceus) head kidney up-regulated after vaccination with Streptococcus iniae formalin-killed cells. Fish & Shellfish Immunology, 26, 197–200. https://doi.org/10.1016/j.fsi.2008.03.014
  • Fulkerson, P. C., & Rothenberg M. E. (2006). Chemokines, CXC | CXCL9 (MIG). In G. J. Laurent & S. D. Shapiro (Eds.) Encyclopedia of Respiratory Medicine (pp. 398-402). Academic Press. https://doi.org/10.1016/B0-12-370879-6/00471-3
  • Gillis, P. L., Mitchell, R. J., Schwalb, A. N., McNichols, K. A., Mackie, G. L., Wood, C. M., & Ackerman, J. D. (2008). Sensitivity of the glochidia (larvae) of freshwater mussels to copper: Assessing the effect of water hardness and dissolved organic carbon on the sensitivity of endangered species, Aquatic Toxicology, 88, 37–145. https://doi.org/10.1016/j.aquatox.2008.04.003
  • González-Stegmaier, R., Guzmán, F., Albericio, F., Villarroel-Espíndola, F., Romero, A., Mulero, V., & Mercado L. (2015). A synthetic peptide derived from the D1 domain of flagellin induced the expression of proinflammatory cytokines in fish macrophages, Fish & Shellfish Immunology, 47, 239–244. https://doi.org/10.1016/j.fsi.2015.09.016
  • Hirono, I., Kondo, H., Koyama, T., Arma, N. R., Hwang, J. Y., Nozaki, R., Midorikawa, N., & Aoki, T. (2007). Characterization of Japanese flounder (Paralichthys olivaceus) NK-lysin, an antimicrobial peptide. Fish & Shellfish Immunology, 22(5), 567-575. https://doi.org/10.1016/j.fsi.2006.08.003
  • Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., & Akira, S. (1999). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. The Journal of Immunology, 162, 3749–52. https://doi.org/10.1038/nri2275
  • Hu, Y., Yoshikawa, T., Chung, S., Hirono, I., & Kondo, H., (2017). Identification of 2 novel type I IFN genes in Japanese flounder, Paralichthys olivaceus. Fish & Shellfish Immunology, 67, 7–10. https://doi.org/10.1016/j.fsi.2017.05.054
  • Imai, S., Tani, T., Ishikawa, Y., Tako, Y., Takaku, Y., & Hisamatsu, S. (2020). Short-term metabolism of biologically incorporated 125I ingested by olive flounder (Paralichthys olivaceus). Journal of Environmental Radioactivity, 214-215, 106161. https://doi.org/10.1016/j.jenvrad.2020.106161
  • Jung, J. Y., Kim, S., Kim, K., Lee, B. J., Kim, K. W., & Han, H. S. (2020). Feed and Disease at Olive Flounder (Paralichthys olivaceus) Farms in Korea. Fishes, 5(3), 21. https://doi.org/10.3390/fishes5030021
  • Kim, I. D. (2022). Ontogeny of the Respiratory Area in Relation to Body Mass with Reference to Resting Metabolism in the Japanese Flounder, Paralichthys olivaceus (Temminck & Schlegel, 1846). Fishes, 7(1), 39. https://doi.org/10.3390/fishes7010039
  • Kondo, H., Kawana, Y., Suzuki, Y., & Hirono, I. (2014). Comprehensive gene expression profiling in Japanese flounder kidney after injection with two different formalin-killed pathogenic bacteria. Fish & Shellfish Immunology, 41(2), 437-440. https://doi.org/10.1016/j.fsi.2014.09.038
  • Kondo, H., Kikumoto, T., Yoshii, K., Murase, N., Yamada, H., Fukuda, Y., & Hirono, I. (2021). Effects of Peptidoglycan and Polyinosinic: Polycytidylic Acid on the Recombinant Subunit Vaccine Efficacy Against Edwardsiella tarda in Japanese Flounder Paralichthys olivaceus. Fish Pathology - J-Stage, 56(3), 149-155. https://doi.org/10.3147/jsfp.56.149
  • Kumar, H., Kawai, T., & Akira, S. (2011). Pathogen Recognition by the Innate Immune System. International Reviews of Immunology, 30, 16–34. https://doi.org/10.3109/08830185.2010.529976
  • Li, H., Sun, Y., & Sun, Li. (2022). A Teleost CXCL10 Is Both an Immunoregulator and an Antimicrobial. Frontiers in Immunology, 13, 917697. https://doi.org/10.3389/fimmu.2022.917697
  • Li, Y., Li, Y., Cao, X., Jin, X., Jin, T. (2017). Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cellular & Molecular Immunology, 14, 80–89. https://doi.org/10.1038/cmi.2016.50
  • Mahla, R. S., Reddy, M. C., Vijaya Raghava Prasad, D., & Kumar, H. (2013). Sweeten AMPs: Role of sugar complexed PAMPs in innate immunity and vaccine biology. Frontiers in Immunology, 4, 1–16. https://doi.org/10.3389/fimmu.2013.00248
  • Metzemaekers, M., Vanheule, V., Janssens, R., Struyf, S., & Proost, P. (2018). Overview of the mechanisms that may contribute to the non-redundant activities of interferon-inducible CXC chemokine receptor 3 ligands. Frontiers in Immunology, 8, 1970. https://doi.org/10.3389/fimmu.2017.01970
  • Müller, M., Carter, S., Hofer, M. J., & Campbell I. L. (2010). The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity - A tale of conflict and conundrum. Neuropathology and Applied Neurobiology, 36, 368–387. https://doi.org/10.1111/j.1365-2990.2010.01089.x
  • Nakamura, K., Gonzales-Plasus, M. M., Ushigusa-Ito, T. Masuda, R., Kabeya, N., Kondo, H., Hirono, I., Satoh, S., & Haga, Y. (2021). Taurine synthesis via the cysteic acid pathway: effect of dietary cysteic acid on growth, body taurine content, and gene expression of taurine-synthesizing enzymes, growth hormone, and insulin-like growth factor 1 in Japanese flounder Paralichthys olivaceus. Fisheries Sciences, 87, 353–363, https://doi.org/10.1007/s12562-021-01500-1
  • Pietretti D., & Wiegertjes G. F. (2014). Ligand specificities of Toll-like receptors in fish: Indications from infection studies. Developmental & Comparative Immunology, 43, 205–222. https://doi.org/10.1016/j.dci.2013.08.010
  • Pijanowski, L., Verburg-van Kemenade, B. M. L., & Chadzinska, M. (2019). A role for CXC chemokines and their receptors in stress axis regulation of common carp. General and Comparative Endocrinology, 280, 194-199. https://doi.org/10.1016/j.ygcen.2019.05.004
  • Reid-Yu, S. A., Tuinema, B. R., Small, C. N., Xing, L. & Coombes, B. K. (2015). CXCL9 Contributes to Antimicrobial Protection of the Gut during Citrobacter rodentium Infection Independent of Chemokine-Receptor Signaling. PLoS Pathogens, 11(2), e1004648. https://doi.org/10.1371/journal.ppat.1004648
  • Riera Romo, M., Pérez-Martínez, D., & Castillo Ferrer, C. (2016). Innate immunity in vertebrates: An overview. Immunology, 148, 125–139.
  • Sanchez, C. C., Kobayashi, K., Coimbra, M. R. M., Fuji, K., Sakamoto, T., & Okamoto, N. (2008). Japanese flounder. In T. D. Kocher, C. Kole (Eds.), Genome Mapping and Genomics in Animals, Volume 2 Genome Mapping and Genomics in Fishes and Aquatic Animals (pp. 135-148). Springer-Verlag Berlin Heidelberg.
  • Sayed, R. K. A., Zaccone, G., Capillo, G., Albano, M., & Mokhtar, D. M. (2022). Structural and Functional Aspects of the Spleen in Molly Fish Poecilia sphenops (Valenciennes, 1846): Synergistic Interactions of Stem Cells, Neurons, and Immune Cells. Biology, 11(5), 779. https://doi.org/10.3390/biology11050779
  • Seikai, T. (2002). Flounder culture and its challenges in Asia. Reviews in Fisheries Science, 10, 421–432.
  • Sekino, M., Saitoh, K., Yamada, T., Kumagai, A., Hara, M., & Yamashita, Y. (2003). Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture, 221, 255–263.
  • Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, 1-7. https://doi.org/10.1101/cshperspect.a000414
  • Tensen, C. P., Flier, J., van der Raaij-Helmer, E. M. H., Sampat-Sardjoepersad, S., van der Schors, R. C., Leurs, R., Scheper, R. J., Boorsma, D. M., Willemze, R. (1999). Human IP-9: a keratinocyte-derived high affinity CXC-chemokine ligand for the IP-10/Mig receptor (CXCR3). Journal of Investigative Dermatology, 112(5), 716-722. https://doi.org/10.1046/j.1523-1747.1999.00581.x
  • Tietze, K., Dalpke, A., Morath, S., Mutters, R., Heeg, K., & Nonnenmacher, C. (2006). Differences in innate immune responses upon stimulation with gram-positive and gram-negative bacteria. Journal of Periodontal Research, 41, 447–454. https://doi.org/10.1111/j.1600-0765.2006.00890.x
  • Valdés, N., Cortés, M., Barraza, F., Reyes-López, F. E., & Imarai, M. (2022). CXCL9-11 chemokines and CXCR3 receptor in teleost fish species. Fish and Shellfish Immunology Reports, 3, 100068. https://doi.org/10.1016/j.fsirep.2022.100068
  • Yagi, M., & Oikawa, S. (2014). Ontogenetic phase shifts in metabolism in a flounder Paralichthys olivaceus. Scientific Reports, 4, 7135 https://doi.org/10.1038/srep07135
  • Yamamoto, E. (1999). Studies on sex manipulation and produc- tion of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture, 173, 235–246.
  • Zhang, J., Kong, X., Zhou, C., Li, L., Nie, G., & Li, X. (2014). Toll-like receptor recognition of bacteria in fish: Ligand specificity and signal pathways, Fish & Shellfish Immunology, 41, 380–388. https://doi.org/10.1016/j.fsi.2014.09.022
  • Zhang, J., Tang, X., Sheng, X., Xing, J., & Zhan, W. (2017). Isolation and identification of a new strain of hirame rhabdovirus (HIRRV) from Japanese flounder Paralichthys olivaceus in China. Virology Journal, 14, 73. https://doi.org/10.1186/s12985-017-0742-4
  • Zhao, B., Diao, J., Li, L., Kondo, H., Li, L., & Hirono, I. (2021). Molecular characterization and expression analysis of Japanese flounder (Paralichthys olivaceus) chemokine receptor CXCR2 in comparison with CXCR1. Developmental & Comparative Immunology, 120, 104037. https://doi.org/10.1016/j.dci.2021.104047
  • Zhou, Z., Zhang, B., & Sun, Li. (2014). Poly(I:C) Induces Antiviral Immune Responses in Japanese Flounder (Paralichthys olivaceus) That Require TLR3 and MDA5 and Is Negatively Regulated by Myd88. PLoS ONE, 9(11), e112918. https://doi.org/10.1371/journal.pone.0112918

Effects of inactivated Streptococcus iniae, Edwardsiella tarda, and Poly I:C on mRNA Expression Levels of CXCL-10 and CXCL-9 Genes in Japanese Flounder

Yıl 2024, , 128 - 139, 01.06.2024
https://doi.org/10.22392/actaquatr.1312305

Öz

The present study accomplished the successful cloning and sequencing of the JfCXCL9_L and JfCXCL10_L genes found in the spleen cDNA of the Japanese flounder (Paralichthys olivaceus). The tissue distribution of these two genes was determined before any stimuli administration at the zero-hour mark. The qRT-PCR analysis demonstrated that the expression of JfCXCL10_L closely mirrored that of IL1-β, displaying an upregulation following the application of Poly I:C (Viral mimic) and formalin-killed Edwardsiella tarda (Gram-Negative mimic), while showing a downregulation after the application of formalin-killed Streptococcus iniae (Gram-Positive mimic) treatment. These findings strongly suggest a role for JfCXCL10_L in the immune response to viral and gram-negative bacterial stimuli. Regarding JfCXCL9_L, mRNA levels were found to be significantly downregulated after FKCET and FKCSI treatments, though to varying extents. Interestingly, at specific time points, JfCXCL9_L levels were even lower compared to Poly I:C treatment. These intriguing findings shed valuable light on the roles of both JfCXCL9_L and JfCXCL10_L in potential functions of immune response mechanisms of the Japanese flounder'.

Kaynakça

  • Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity. Cell, 124, 783–801. https://doi.org/10.1016/j.cell.2006.02.015
  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2002). Innate immunity. In Molecular Biology of the Cell, 4th edition., Garland Science, New York, NY, USA.
  • Alexopoulou, L., Czopik Holt, A., Medzhitov, R., & Flavell, R.A. (2001). Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3. Nature, 413, 732–738. https://doi.org/10.1038/35099560
  • Boison, S. A., Gjerde, B., Hillestad, B., & Moghadam, H. K. (2019). Genomic and Transcriptomic Analysis of Amoebic Gill Disease Resistance in Atlantic Salmon (Salmo salar L.). Frontiers in Genetics, 10, 66. https://doi.org/10.3389/fgene.2019.00068
  • Bonecchi, R., Bianchi, G., Bordignon, P. P., D'Ambrosio, D., Lang, R., & Borsatti, A. (1998). Differential Expression of Chemokine Receptors and Chemotactic Responsiveness of Type 1 T Helper Cells (Th1s) and Th2s. Journal of Experimental Medicine, 181(7), 129–134. https://doi.org/10.1084/jem.187.1.129
  • Chen, J., Xu, Q., Wang, T., Collet, B., Corripio-Miyar, Y., Bird, S., Xie, P., Nie, P., Secombes, C. J., & Zou, J. (2013). Phylogenetic analysis of vertebrate CXC chemokines reveals novel lineage specific groups in teleost fish, Developmental & Comparative Immunology, 41, 137–152. https://doi.org/10.1016/j.dci.2013.05.006
  • Cole, K. E., Strick, C. A., Paradis, T. J., Ogborne, K. T., Loetscher, M., Gladue, R. P., Lin, W., Boyd, J. G., Moser, B., Wood, D. E., Sahagan, B. G., & Neote, K. (1998). Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. Journal of Experimental Medicine, 187(12), 2009-2021. https://doi.org/10.1084/jem.187.12.2009
  • Ding, Q., Lu, P., Xia, Y., Ding, S., Fan, Y., Li, X., Han, P., Liu, J., Tian, D., & Liu. M. (2016). CXCL9: evidence and contradictions for its role in tumor progression. Cancer Med., 5(11), 3246-3259. https://doi.org/10.1002/cam4.934
  • Don, S., Ohtani, M., Hikima, J., Sung, T., Kondo, H., Hirono, I., & Aoki, T. (2012). Molecular cloning and characterization of Toll-like receptor 3 in Japanese flounder, Paralichthys olivaceus. Developmental & Comparative Immunology, 37, 87–96. https://doi.org/10.1016/j.dci.2011.12.004
  • Dumrongphol, Y., Hirota, T., Kondo, H., Aoki, T., & Hirono I. (2009). Identification of novel genes in Japanese flounder (Paralichthys olivaceus) head kidney up-regulated after vaccination with Streptococcus iniae formalin-killed cells. Fish & Shellfish Immunology, 26, 197–200. https://doi.org/10.1016/j.fsi.2008.03.014
  • Fulkerson, P. C., & Rothenberg M. E. (2006). Chemokines, CXC | CXCL9 (MIG). In G. J. Laurent & S. D. Shapiro (Eds.) Encyclopedia of Respiratory Medicine (pp. 398-402). Academic Press. https://doi.org/10.1016/B0-12-370879-6/00471-3
  • Gillis, P. L., Mitchell, R. J., Schwalb, A. N., McNichols, K. A., Mackie, G. L., Wood, C. M., & Ackerman, J. D. (2008). Sensitivity of the glochidia (larvae) of freshwater mussels to copper: Assessing the effect of water hardness and dissolved organic carbon on the sensitivity of endangered species, Aquatic Toxicology, 88, 37–145. https://doi.org/10.1016/j.aquatox.2008.04.003
  • González-Stegmaier, R., Guzmán, F., Albericio, F., Villarroel-Espíndola, F., Romero, A., Mulero, V., & Mercado L. (2015). A synthetic peptide derived from the D1 domain of flagellin induced the expression of proinflammatory cytokines in fish macrophages, Fish & Shellfish Immunology, 47, 239–244. https://doi.org/10.1016/j.fsi.2015.09.016
  • Hirono, I., Kondo, H., Koyama, T., Arma, N. R., Hwang, J. Y., Nozaki, R., Midorikawa, N., & Aoki, T. (2007). Characterization of Japanese flounder (Paralichthys olivaceus) NK-lysin, an antimicrobial peptide. Fish & Shellfish Immunology, 22(5), 567-575. https://doi.org/10.1016/j.fsi.2006.08.003
  • Hoshino, K., Takeuchi, O., Kawai, T., Sanjo, H., Ogawa, T., Takeda, Y., Takeda, K., & Akira, S. (1999). Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. The Journal of Immunology, 162, 3749–52. https://doi.org/10.1038/nri2275
  • Hu, Y., Yoshikawa, T., Chung, S., Hirono, I., & Kondo, H., (2017). Identification of 2 novel type I IFN genes in Japanese flounder, Paralichthys olivaceus. Fish & Shellfish Immunology, 67, 7–10. https://doi.org/10.1016/j.fsi.2017.05.054
  • Imai, S., Tani, T., Ishikawa, Y., Tako, Y., Takaku, Y., & Hisamatsu, S. (2020). Short-term metabolism of biologically incorporated 125I ingested by olive flounder (Paralichthys olivaceus). Journal of Environmental Radioactivity, 214-215, 106161. https://doi.org/10.1016/j.jenvrad.2020.106161
  • Jung, J. Y., Kim, S., Kim, K., Lee, B. J., Kim, K. W., & Han, H. S. (2020). Feed and Disease at Olive Flounder (Paralichthys olivaceus) Farms in Korea. Fishes, 5(3), 21. https://doi.org/10.3390/fishes5030021
  • Kim, I. D. (2022). Ontogeny of the Respiratory Area in Relation to Body Mass with Reference to Resting Metabolism in the Japanese Flounder, Paralichthys olivaceus (Temminck & Schlegel, 1846). Fishes, 7(1), 39. https://doi.org/10.3390/fishes7010039
  • Kondo, H., Kawana, Y., Suzuki, Y., & Hirono, I. (2014). Comprehensive gene expression profiling in Japanese flounder kidney after injection with two different formalin-killed pathogenic bacteria. Fish & Shellfish Immunology, 41(2), 437-440. https://doi.org/10.1016/j.fsi.2014.09.038
  • Kondo, H., Kikumoto, T., Yoshii, K., Murase, N., Yamada, H., Fukuda, Y., & Hirono, I. (2021). Effects of Peptidoglycan and Polyinosinic: Polycytidylic Acid on the Recombinant Subunit Vaccine Efficacy Against Edwardsiella tarda in Japanese Flounder Paralichthys olivaceus. Fish Pathology - J-Stage, 56(3), 149-155. https://doi.org/10.3147/jsfp.56.149
  • Kumar, H., Kawai, T., & Akira, S. (2011). Pathogen Recognition by the Innate Immune System. International Reviews of Immunology, 30, 16–34. https://doi.org/10.3109/08830185.2010.529976
  • Li, H., Sun, Y., & Sun, Li. (2022). A Teleost CXCL10 Is Both an Immunoregulator and an Antimicrobial. Frontiers in Immunology, 13, 917697. https://doi.org/10.3389/fimmu.2022.917697
  • Li, Y., Li, Y., Cao, X., Jin, X., Jin, T. (2017). Pattern recognition receptors in zebrafish provide functional and evolutionary insight into innate immune signaling pathways. Cellular & Molecular Immunology, 14, 80–89. https://doi.org/10.1038/cmi.2016.50
  • Mahla, R. S., Reddy, M. C., Vijaya Raghava Prasad, D., & Kumar, H. (2013). Sweeten AMPs: Role of sugar complexed PAMPs in innate immunity and vaccine biology. Frontiers in Immunology, 4, 1–16. https://doi.org/10.3389/fimmu.2013.00248
  • Metzemaekers, M., Vanheule, V., Janssens, R., Struyf, S., & Proost, P. (2018). Overview of the mechanisms that may contribute to the non-redundant activities of interferon-inducible CXC chemokine receptor 3 ligands. Frontiers in Immunology, 8, 1970. https://doi.org/10.3389/fimmu.2017.01970
  • Müller, M., Carter, S., Hofer, M. J., & Campbell I. L. (2010). The chemokine receptor CXCR3 and its ligands CXCL9, CXCL10 and CXCL11 in neuroimmunity - A tale of conflict and conundrum. Neuropathology and Applied Neurobiology, 36, 368–387. https://doi.org/10.1111/j.1365-2990.2010.01089.x
  • Nakamura, K., Gonzales-Plasus, M. M., Ushigusa-Ito, T. Masuda, R., Kabeya, N., Kondo, H., Hirono, I., Satoh, S., & Haga, Y. (2021). Taurine synthesis via the cysteic acid pathway: effect of dietary cysteic acid on growth, body taurine content, and gene expression of taurine-synthesizing enzymes, growth hormone, and insulin-like growth factor 1 in Japanese flounder Paralichthys olivaceus. Fisheries Sciences, 87, 353–363, https://doi.org/10.1007/s12562-021-01500-1
  • Pietretti D., & Wiegertjes G. F. (2014). Ligand specificities of Toll-like receptors in fish: Indications from infection studies. Developmental & Comparative Immunology, 43, 205–222. https://doi.org/10.1016/j.dci.2013.08.010
  • Pijanowski, L., Verburg-van Kemenade, B. M. L., & Chadzinska, M. (2019). A role for CXC chemokines and their receptors in stress axis regulation of common carp. General and Comparative Endocrinology, 280, 194-199. https://doi.org/10.1016/j.ygcen.2019.05.004
  • Reid-Yu, S. A., Tuinema, B. R., Small, C. N., Xing, L. & Coombes, B. K. (2015). CXCL9 Contributes to Antimicrobial Protection of the Gut during Citrobacter rodentium Infection Independent of Chemokine-Receptor Signaling. PLoS Pathogens, 11(2), e1004648. https://doi.org/10.1371/journal.ppat.1004648
  • Riera Romo, M., Pérez-Martínez, D., & Castillo Ferrer, C. (2016). Innate immunity in vertebrates: An overview. Immunology, 148, 125–139.
  • Sanchez, C. C., Kobayashi, K., Coimbra, M. R. M., Fuji, K., Sakamoto, T., & Okamoto, N. (2008). Japanese flounder. In T. D. Kocher, C. Kole (Eds.), Genome Mapping and Genomics in Animals, Volume 2 Genome Mapping and Genomics in Fishes and Aquatic Animals (pp. 135-148). Springer-Verlag Berlin Heidelberg.
  • Sayed, R. K. A., Zaccone, G., Capillo, G., Albano, M., & Mokhtar, D. M. (2022). Structural and Functional Aspects of the Spleen in Molly Fish Poecilia sphenops (Valenciennes, 1846): Synergistic Interactions of Stem Cells, Neurons, and Immune Cells. Biology, 11(5), 779. https://doi.org/10.3390/biology11050779
  • Seikai, T. (2002). Flounder culture and its challenges in Asia. Reviews in Fisheries Science, 10, 421–432.
  • Sekino, M., Saitoh, K., Yamada, T., Kumagai, A., Hara, M., & Yamashita, Y. (2003). Microsatellite-based pedigree tracing in a Japanese flounder Paralichthys olivaceus hatchery strain: implications for hatchery management related to stock enhancement program. Aquaculture, 221, 255–263.
  • Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, 1-7. https://doi.org/10.1101/cshperspect.a000414
  • Tensen, C. P., Flier, J., van der Raaij-Helmer, E. M. H., Sampat-Sardjoepersad, S., van der Schors, R. C., Leurs, R., Scheper, R. J., Boorsma, D. M., Willemze, R. (1999). Human IP-9: a keratinocyte-derived high affinity CXC-chemokine ligand for the IP-10/Mig receptor (CXCR3). Journal of Investigative Dermatology, 112(5), 716-722. https://doi.org/10.1046/j.1523-1747.1999.00581.x
  • Tietze, K., Dalpke, A., Morath, S., Mutters, R., Heeg, K., & Nonnenmacher, C. (2006). Differences in innate immune responses upon stimulation with gram-positive and gram-negative bacteria. Journal of Periodontal Research, 41, 447–454. https://doi.org/10.1111/j.1600-0765.2006.00890.x
  • Valdés, N., Cortés, M., Barraza, F., Reyes-López, F. E., & Imarai, M. (2022). CXCL9-11 chemokines and CXCR3 receptor in teleost fish species. Fish and Shellfish Immunology Reports, 3, 100068. https://doi.org/10.1016/j.fsirep.2022.100068
  • Yagi, M., & Oikawa, S. (2014). Ontogenetic phase shifts in metabolism in a flounder Paralichthys olivaceus. Scientific Reports, 4, 7135 https://doi.org/10.1038/srep07135
  • Yamamoto, E. (1999). Studies on sex manipulation and produc- tion of cloned populations in hirame, Paralichthys olivaceus (Temminck et Schlegel). Aquaculture, 173, 235–246.
  • Zhang, J., Kong, X., Zhou, C., Li, L., Nie, G., & Li, X. (2014). Toll-like receptor recognition of bacteria in fish: Ligand specificity and signal pathways, Fish & Shellfish Immunology, 41, 380–388. https://doi.org/10.1016/j.fsi.2014.09.022
  • Zhang, J., Tang, X., Sheng, X., Xing, J., & Zhan, W. (2017). Isolation and identification of a new strain of hirame rhabdovirus (HIRRV) from Japanese flounder Paralichthys olivaceus in China. Virology Journal, 14, 73. https://doi.org/10.1186/s12985-017-0742-4
  • Zhao, B., Diao, J., Li, L., Kondo, H., Li, L., & Hirono, I. (2021). Molecular characterization and expression analysis of Japanese flounder (Paralichthys olivaceus) chemokine receptor CXCR2 in comparison with CXCR1. Developmental & Comparative Immunology, 120, 104037. https://doi.org/10.1016/j.dci.2021.104047
  • Zhou, Z., Zhang, B., & Sun, Li. (2014). Poly(I:C) Induces Antiviral Immune Responses in Japanese Flounder (Paralichthys olivaceus) That Require TLR3 and MDA5 and Is Negatively Regulated by Myd88. PLoS ONE, 9(11), e112918. https://doi.org/10.1371/journal.pone.0112918
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Ergi Bahrioğlu 0000-0003-3707-337X

Hidehiro Kondo Bu kişi benim 0000-0001-5102-6831

Ikuo Hırono Bu kişi benim 0000-0002-2355-3121

Erken Görünüm Tarihi 19 Ekim 2023
Yayımlanma Tarihi 1 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Bahrioğlu, E., Kondo, H., & Hırono, I. (2024). Effects of inactivated Streptococcus iniae, Edwardsiella tarda, and Poly I:C on mRNA Expression Levels of CXCL-10 and CXCL-9 Genes in Japanese Flounder. Acta Aquatica Turcica, 20(2), 128-139. https://doi.org/10.22392/actaquatr.1312305