Türkiye Denizleri Işık Etkileşimleri
Yıl 2019,
, 171 - 180, 14.06.2019
Fethi Bengil
,
Sinan Mavruk
Öz
Işık ekosistemlerin birincil enerji kaynağı olmasından dolayı oldukça önemlidir. Bu çalışmada, Türkiye deniz alanlarında ışık özellikleri ve deniz suyu etkileşimlerini anlama ve zaman içerisindeki eğilimlerini değerlendirmek amacıyla Eylül 1997 ile Mart 2017 arasında uzaktan algılama ile elde edilen veri seti kullanılmıştır. Değerlendirme ışık yoğunluğunun göstergesi olarak fotosentetik olarak aktif ışıma (PAR), deniz suyu etkileşiminin göstergesi olarak ise Öfotik derinlik (Zeu) ve PAR sönümlenme katsayısı (KdPAR) değişkenleri üzerinden yapılmıştır. Bulgular ortamdaki ışık yoğunluğunun zamana bağlı değişiklik göstermemekle birlikte, Türkiye deniz alanlarında Zeu genellikle artış eğiliminde olduğunu ve bu durumla ilişkili olarak KdPAR yalnızca Karadeniz’de azalma eğiliminde olduğunu göstermiştir. Sonuç olarak, ışık yoğunluğundan öte, deniz suyundaki optik olarak aktif maddelerin ışık etkileşimindeki değişimleri belirlediği anlaşılmıştır. Bu çalışmada sunulan parametrelerin, farklı bölgelerde geliştirilmiş deneysel ilişkilerden üretilen parametreler yerine model çalışmalarında kullanılmasının belirsizliği azaltmak konusunda avantaj sağlayacağı düşünülmektedir.
Kaynakça
- Akpinar, A., Yilmaz, E., Fach, B. A., & Salihoğlu, B. (2016). Physical oceanography of the Eastern Mediterranean Sea. In: Turan, C., Salihoğlu, B., Özgür Özbek, E., Öztürk, B. (Eds.), The Turkish Part of the Mediterranean Sea; Marine Biodiversity, Fisheries, Conservation and Governance. Turkish Marine Research Foundation (TUDAV), Turkish Marine Foundation, lṡtanbul, 1—14.
- Bengil, F., & Mavruk, S. (2018). Bio-optical trends of seas around Turkey: An assessment of the spatial and temporal variability. Oceanologia, 60(4) https://doi.org/10.1016/j.oceano.2018.03.004.
- Bengil, F., & Mavruk, S. (2019). Warming in Turkish seas: comparative multidecadal assessment. Turk. J. Fish.& Aquat. Sci. 19(1), 51-57 http://doi.org/10.4194/1303-2712-v19_1_06
- Bengil, F., McKee, D., Beşiktepe, S. T., Sanjuan Calzado, V., &Trees, C. (2016). A bio-optical model for integration into ecosystem models for the Ligurian Sea. Progress in Oceanography. 149, 1–15. https://doi.org/10.1016/j.pocean.2016.10.007.
- Beşiktepe, S., T., Sur, H. I., Özsoy, E., Latif, M. A., Oguz, T., & Ünlüata, Ü. (1994). The circulation and hydrography of the Marmara Sea. Progress in Oceanographist. 34(4), 285—334, http://dx.doi.org/10.1016/0079- 6611(94)90018-3.
- Bronaugh, D., & Werner, A. (2013). zyp: Zhang + Yue-Pilon trends package.
- Cleveland, R. B., Cleveland, W.S., McRae, J.E., & Terpenning, I. (1990). STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6(1), 3—73.Ediger, D., & Yilmaz, A. (1996a). Variability of light transparency in physically and biochemically different water masses: Turkish Seas. Fresenius Environmental Bulletin, 5(3), 133-140.
- Ediger, D., & Yilmaz, A. (1996b). Characteristics of deep chlorphyll maximum in the Northeastern Mediterranean with respect to environmental conditions. J. Mar. Syst. 9, 291–303. https://doi.org/https://doi.org/10.1016/S0924-7963(96)00044-9.
- Ediger, D., Tugrul, S., Polat, S. C., Yilmaz, A., & Salihoglu, I. (1999). Abundance and elemen- tal composition of particulate matter in the upper layer of north-eastern Mediterranean. P. Ma- lanotte-Rizzoli and V.N. Eremeev (eds), The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems, 241-266. 1999 Kluwer Academic Publishers, Printed in Netherlands.
- GlobColor (2017). GlobColor Product User Guide. GlobColor internet sitesinden, http://www.globcolour.info/CDR_Docs/GlobCOLOUR_PUG.pdf adersinden alınmıştır.
- Hamza, W., Ennet, P., Tamsalu, R., & Zalesny, V. (2003). Aquatic Ecology, 37: 307. https://doi.org/10.1023/A:1025836929341.
- Hipel, K. W., & McLeod, A. I., (1994). Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam, 1013 pp.
- Ignatiades, L., Psarra, S., Zervakis, V., Pagou, K., Souvermezoglou, E., Assimakopoulou, G., & Gotsis-Skretas, O. (2002). Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean). J. Mar. Syst. 36(1—2), 11—28, http://dx.doi.org/10.1016/S0924- 7963(02)00132-X.
- Kirk, J. T. O. (2011). Light and photosynthesis in aquatic ecosystems. Cambridge University Press (3rd ed.). Cambridge: Cambridge University Press. http://doi.org/10.1016/0304-3770(95)90010-1
- Maritorena, S., & Siegel, D. A. (2005). Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sensing of Environment 94(4), 429—440, http://dx.doi.org/10.1016/ j.rse.2004.08.014.
- McLeod, A. I. (2011). Kendall: Kendall Rank Correlation and Mann- Kendall Trend Test.
- Morel, A. (2009). Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible? Journal of Geophysical Research, 114, C01016, doi:10.1029/2008JC004803.
- Oguz, T., & Gilbert, D. (2007). Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960—2000: evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep Res. Pt. I Oceanogr. Res. Pap. 54 (2), 220—242, http://dx. doi.org/10.1016/j.dsr.2006.09.010.
- Oguz, T., Tugrul, S., Kideys, A., Ediger, V., & Kubilay, N. (2004). Physical and biogeochemical characteristics of the Black Sea. In: Robinson, A.R., Brink, H.K. (Eds.), The Sea. Harvard Univ. Press, 1331— 1369.
- Pohlert, T. (2016). Package 'Trend': Non-Parametric Trend Tests and Change-Point Detection. R Package. 26. , http://dx.doi.org/ 10.13140/RG.2.1.2633.4243. R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria Available from: http://www.R-project.org/ (accessed 15.11.16).
- Sen, P. K. (1968). Estimates of the regression based on Kendall's Tau. J. Am. Stat. Assoc. 63, 1379—1389.
- Tzortziou, M., Zeri, C., Dimitriou, E., Ding, Y., Jaffé, R., Anagnostou, E., Pitta, E., & Mentzafou, A. (2015). Colored dissolved organic matter dynamics and anthropogenic influences in a major trans- boundary river and its coastal wetland. Limnol. Oceanogr. 60(4), 1222—1240, http://dx.doi.org/10.1002/lno.10092.
- Uysal, Z. (2006). Vertical distribution of marine cyanobacteria Synechococcus spp. in the Black, Marmara, Aegean, and eastern Mediterranean seas. Deep Sea Res. Part II Top. Stud. Oceanogr. 53, 1976–1987. https://doi.org/https://doi.org/10.1016/j.dsr2.2006.03.016
- Yalçın, B., Artüz, M. L., Pavlidou, A., Çubuk, S., & Dassenakis, M. (2017). Nutrient dynamics and eutrophication in the Sea of Marmara: data from recent oceanographic research. Sci. Total Environ. 601-602, 405-424, http://dx.doi.org/10.1016/j.scitotenv.2017.05.179.
- Yilmaz, A., Tugrul, S. Polat, S. C, Ediger, D., Coban, Y., & Morkoc, E. (1998). On the production, elemental composition (C, N,P) and distribution of photosynthetic organic matter in the Southern Black Sea. Hydrobiologia, 363, 141-156.
- Yilmaz, A., Yayla, M. K., Yildiz Y., & Tugrul S. (2000). Primary production, availability/uptake of nutrients and photo-adaptation of phytoplankton in three interconnected regional seas: Black Sea, Sea of Marmara and Eastern Mediterranean. "JGOFS, Open Science Conference, Ocean Biogeochemistry: A New Paradigm", p.76.
- Yılmaz, A. (2002). Türkiye Denizlerinin Biyojeokimyası: Dağılımlar ve Dönüşümler. Turkish Journal of Engineering and Environmental Sciences, 26, 219-235
Light Interactions of Turkish Seas
Yıl 2019,
, 171 - 180, 14.06.2019
Fethi Bengil
,
Sinan Mavruk
Öz
In this study, data sets obtained by satellite remote sensing were used to understand light characterization and sea waterlight interactions and evaluate inter-annual trends between September 1997 and March 2017. Photosynthetically active
radiation (PAR) in terms of light intensity, and Euphotic depth (Zeu) and attenuation coefficient (KdPAR) in terms of lightseawater interaction were used for descriptive and time series analysis. As a result of this study, PAR showed no differences
over the time period, while Zeu (mostly increasing) and KdPAR generally showed significant trends in the regions. It can be
concluded that optically active constituents determine the interaction rather than light intensity in the regions. Additionally, it
is expected that using these parameters in modelling studies will provide an advantage on reducing uncertainties that come
from globally used bio-optical empirical relationships.
Kaynakça
- Akpinar, A., Yilmaz, E., Fach, B. A., & Salihoğlu, B. (2016). Physical oceanography of the Eastern Mediterranean Sea. In: Turan, C., Salihoğlu, B., Özgür Özbek, E., Öztürk, B. (Eds.), The Turkish Part of the Mediterranean Sea; Marine Biodiversity, Fisheries, Conservation and Governance. Turkish Marine Research Foundation (TUDAV), Turkish Marine Foundation, lṡtanbul, 1—14.
- Bengil, F., & Mavruk, S. (2018). Bio-optical trends of seas around Turkey: An assessment of the spatial and temporal variability. Oceanologia, 60(4) https://doi.org/10.1016/j.oceano.2018.03.004.
- Bengil, F., & Mavruk, S. (2019). Warming in Turkish seas: comparative multidecadal assessment. Turk. J. Fish.& Aquat. Sci. 19(1), 51-57 http://doi.org/10.4194/1303-2712-v19_1_06
- Bengil, F., McKee, D., Beşiktepe, S. T., Sanjuan Calzado, V., &Trees, C. (2016). A bio-optical model for integration into ecosystem models for the Ligurian Sea. Progress in Oceanography. 149, 1–15. https://doi.org/10.1016/j.pocean.2016.10.007.
- Beşiktepe, S., T., Sur, H. I., Özsoy, E., Latif, M. A., Oguz, T., & Ünlüata, Ü. (1994). The circulation and hydrography of the Marmara Sea. Progress in Oceanographist. 34(4), 285—334, http://dx.doi.org/10.1016/0079- 6611(94)90018-3.
- Bronaugh, D., & Werner, A. (2013). zyp: Zhang + Yue-Pilon trends package.
- Cleveland, R. B., Cleveland, W.S., McRae, J.E., & Terpenning, I. (1990). STL: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6(1), 3—73.Ediger, D., & Yilmaz, A. (1996a). Variability of light transparency in physically and biochemically different water masses: Turkish Seas. Fresenius Environmental Bulletin, 5(3), 133-140.
- Ediger, D., & Yilmaz, A. (1996b). Characteristics of deep chlorphyll maximum in the Northeastern Mediterranean with respect to environmental conditions. J. Mar. Syst. 9, 291–303. https://doi.org/https://doi.org/10.1016/S0924-7963(96)00044-9.
- Ediger, D., Tugrul, S., Polat, S. C., Yilmaz, A., & Salihoglu, I. (1999). Abundance and elemen- tal composition of particulate matter in the upper layer of north-eastern Mediterranean. P. Ma- lanotte-Rizzoli and V.N. Eremeev (eds), The Eastern Mediterranean as a Laboratory Basin for the Assessment of Contrasting Ecosystems, 241-266. 1999 Kluwer Academic Publishers, Printed in Netherlands.
- GlobColor (2017). GlobColor Product User Guide. GlobColor internet sitesinden, http://www.globcolour.info/CDR_Docs/GlobCOLOUR_PUG.pdf adersinden alınmıştır.
- Hamza, W., Ennet, P., Tamsalu, R., & Zalesny, V. (2003). Aquatic Ecology, 37: 307. https://doi.org/10.1023/A:1025836929341.
- Hipel, K. W., & McLeod, A. I., (1994). Time Series Modelling of Water Resources and Environmental Systems. Elsevier, Amsterdam, 1013 pp.
- Ignatiades, L., Psarra, S., Zervakis, V., Pagou, K., Souvermezoglou, E., Assimakopoulou, G., & Gotsis-Skretas, O. (2002). Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean). J. Mar. Syst. 36(1—2), 11—28, http://dx.doi.org/10.1016/S0924- 7963(02)00132-X.
- Kirk, J. T. O. (2011). Light and photosynthesis in aquatic ecosystems. Cambridge University Press (3rd ed.). Cambridge: Cambridge University Press. http://doi.org/10.1016/0304-3770(95)90010-1
- Maritorena, S., & Siegel, D. A. (2005). Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sensing of Environment 94(4), 429—440, http://dx.doi.org/10.1016/ j.rse.2004.08.014.
- McLeod, A. I. (2011). Kendall: Kendall Rank Correlation and Mann- Kendall Trend Test.
- Morel, A. (2009). Are the empirical relationships describing the bio-optical properties of case 1 waters consistent and internally compatible? Journal of Geophysical Research, 114, C01016, doi:10.1029/2008JC004803.
- Oguz, T., & Gilbert, D. (2007). Abrupt transitions of the top-down controlled Black Sea pelagic ecosystem during 1960—2000: evidence for regime-shifts under strong fishery exploitation and nutrient enrichment modulated by climate-induced variations. Deep Res. Pt. I Oceanogr. Res. Pap. 54 (2), 220—242, http://dx. doi.org/10.1016/j.dsr.2006.09.010.
- Oguz, T., Tugrul, S., Kideys, A., Ediger, V., & Kubilay, N. (2004). Physical and biogeochemical characteristics of the Black Sea. In: Robinson, A.R., Brink, H.K. (Eds.), The Sea. Harvard Univ. Press, 1331— 1369.
- Pohlert, T. (2016). Package 'Trend': Non-Parametric Trend Tests and Change-Point Detection. R Package. 26. , http://dx.doi.org/ 10.13140/RG.2.1.2633.4243. R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria Available from: http://www.R-project.org/ (accessed 15.11.16).
- Sen, P. K. (1968). Estimates of the regression based on Kendall's Tau. J. Am. Stat. Assoc. 63, 1379—1389.
- Tzortziou, M., Zeri, C., Dimitriou, E., Ding, Y., Jaffé, R., Anagnostou, E., Pitta, E., & Mentzafou, A. (2015). Colored dissolved organic matter dynamics and anthropogenic influences in a major trans- boundary river and its coastal wetland. Limnol. Oceanogr. 60(4), 1222—1240, http://dx.doi.org/10.1002/lno.10092.
- Uysal, Z. (2006). Vertical distribution of marine cyanobacteria Synechococcus spp. in the Black, Marmara, Aegean, and eastern Mediterranean seas. Deep Sea Res. Part II Top. Stud. Oceanogr. 53, 1976–1987. https://doi.org/https://doi.org/10.1016/j.dsr2.2006.03.016
- Yalçın, B., Artüz, M. L., Pavlidou, A., Çubuk, S., & Dassenakis, M. (2017). Nutrient dynamics and eutrophication in the Sea of Marmara: data from recent oceanographic research. Sci. Total Environ. 601-602, 405-424, http://dx.doi.org/10.1016/j.scitotenv.2017.05.179.
- Yilmaz, A., Tugrul, S. Polat, S. C, Ediger, D., Coban, Y., & Morkoc, E. (1998). On the production, elemental composition (C, N,P) and distribution of photosynthetic organic matter in the Southern Black Sea. Hydrobiologia, 363, 141-156.
- Yilmaz, A., Yayla, M. K., Yildiz Y., & Tugrul S. (2000). Primary production, availability/uptake of nutrients and photo-adaptation of phytoplankton in three interconnected regional seas: Black Sea, Sea of Marmara and Eastern Mediterranean. "JGOFS, Open Science Conference, Ocean Biogeochemistry: A New Paradigm", p.76.
- Yılmaz, A. (2002). Türkiye Denizlerinin Biyojeokimyası: Dağılımlar ve Dönüşümler. Turkish Journal of Engineering and Environmental Sciences, 26, 219-235