Tez Özeti
BibTex RIS Kaynak Göster

Yeni Bir Maya ile Cystoseira barbata (Stackhouse) C. Agardh, 1820 Taksonundan Biyoetanol Üretimi

Yıl 2019, , 524 - 534, 16.12.2019
https://doi.org/10.22392/actaquatr.564986

Öz

Bu çalışmada Çanakkale Boğazı kıyılarından
toplanan kahverengi alglere ait Cystoseira
barbata taksonu kullanılarak
biyoetanol eldesi araştırılmıştır. İlkin bu taksondan elde edilen sodyum
alginat kullanılmış, sonrasında ise tallusun kendisi öğütülerek kullanılmıştır.
Maya olarak maya 1, maya 2 ve ticari maya suşları kullanılmıştır. Yapılan
ölçümler sonucunda üç maya örneği de C.
barbata taksonunu karbonhidrat
kaynağı olarak kullanmıştır. Fakat kullanma sürelerinde farklılık gözlenmiştir.
Alg örneğini en uzun süre de kullanan maya, maya1 olarak adlandırılan mayadır.
Maya 2 olarak adlandırılan mayanın ise üçüncü günde 10000 ppm seviyesine
ulaştığı belirlenmiştir. Yapılan çalışmada kullanılan mayalar içinde en verimli
ve en kısa sürede etki gösteren maya 2 olarak isimlendirilen mayanın olduğu
tespit edilmiştir.

Teşekkür

Katkılarından dolayı Dr. Öğrt. Üyesi Tülay TURGUT GENÇ’e teşekkür ederim.

Kaynakça

  • Amin, S, (2009). Review on biofuel oil and gas production processes from microalgae. Energy Conversion and Management 50(7), 1834–1840.
  • Adams, J.M., Gallagher, J.A., & Donnison, I.S. (2009). Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. Journal of Applied Phycology, 21(5), 569–574.
  • Adams, J.M., Toop, T.A., Gallagher, J.M., & Donnison, I.S. (2011). Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresource Technology, 102(21), 9976-9984.
  • Ahmed, A.S., Khan, S., Hamdan, S., Rahman, R., Kalam, A., Masjuki, H.H., & Mahlia, T.M.I. (2010). Biodiesel Production from Macro Algae as a Green Fuel for Diesel Engine. Journal of Energy & Environment, l (2), 1-5.
  • Başak, S., Özgün, D., & Çınar, Ö. (2014). Alglerle Biyoyakıt Üretiminde Atıksuyun Kullanımı. Su Ürünleri Dergisi, 29(1), 93-102
  • Borines, M.G., de Leon, R.L., & Cuello, J.L. (2013). Bioethanol production from the macroalgae Sargassum spp. Bioresource Technology, 138, 22-29.
  • Bruhn, A., Dahl, J., Nielsen, H.B., Nikolaisen, L., Rasmussen, M.B., Markager, S., Olesen, B., Arias, C., & Jensen, P.D. (2011). Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion, Bioresource Technology, 102, 2595-2604.
  • Chaudhary, L., Pradhan, P., Soni, N., Singh, P., & Tiwari, A. (2014). Algae as a feed stock for bioethanol production: new entrance in biofuel world. International Journal of Chemtech Research, 6(2): 1381–1389.
  • Delgenes, J.P., Moletta, R., & Navarro, J. (1988). Fermentation of D-xylose, D-glucose and L-arabinose mixture by Pichia stipitis Y 7124: Sugar tolerance. Applied Microbiology and Biotechnology, 29(2), 155-161.
  • Demain, A., Newcomb, M., & Wu, J.H.D. (2005). Cellulase, clostridia and ethanol. Microbiology and Molecular Biology Reviews, 69(1), 124–154.
  • Demirbas, A. (2009). Biofuels securing the planet’s future energy needs. Energy Conversion and Management, 50(9), 2239–2249.
  • Fu, C.C., Hung, T.C., Chen, J.Y., Su, C.H., & Wu, W.T. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 101(22), 8750–8754.
  • Food and Agriculture Organization of the United Nations (FAO). (2017). Available at: http://www.fao.org/bioenergy/aquaticbiofuels/en/
  • Gallagher, J.A., Adams, J.M.M., Toop, T.A., & Donnison, I.S. (2011). Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresource Technology, 102(21), 9976–9984.
  • Georgianna, D.R., & Mayfield, S.P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488(7411), 329–335.
  • Hacisalihoglu, B., Kirtay, E., & Demirbas, A. (2009). Historical role of Turkey in petroleum between Caspian Sea Basin and the Middle East. Society Political Economy Culturel Research, 1, 1-25.
  • Hong, I.K., Jeon, H., & Lee, S.B. (2014). Comparison of red, brown and green seaweeds on enzymatic saccharification process. Journal of Industrial Engineering Chemistry, 20(5), 2687–2691.
  • Horn, S.J., Aasen, I.M., & Østgaard, K. (2000). Production of ethanol from mannitol by Zymnobacter palmae. Journal of Industrial Microbiology & Biotechnology, 24(1), 51–57.
  • Jang, J.S., Cho, Y., Jeong, G.T., & Kim, S.K. (2012). Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosystems Engineering, 35(1-2), 11–18.
  • John, R.P., Anisha, G.S., Nampoothiri, K.M., & Pandey, A. (2011). Micro and macro algal biomass: a Renewable source for bioethanol. Bioresource Technology, 102(1), 186–193.
  • Jung, K.H., Ji-Hyeon, Y., Lee, S.E., Choi, W.Y., Kong, D.H., & Lee, H.Y. (2011). Repeated-Batch Operation of Surface-Aerated Fermentor for Bioethanol Production from the Hydrolysate of Seaweed Sargassum sagamianum. Journal of Microbiology and Biotechnology, 21(3): 323–331.
  • Khambhaty, Y., Kaplana, M., Gandhi, M.R., Thampy, S., Maiti, P., Brahmbhatt, H., Eswaran, K., & Ghosh, P.K. (2012). Kappaphycus alvarezzii as asource of bioethanol. Bioresource Technology, 103(1), 180–185.
  • Koçoğlu, Z.G., 2010. Çanakkale Boğazındaki bazı kahverengi alglerde alginat miktarlarının yıllık değişimi. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü,Yüksek Lisans Tezi, Çanakkale.
  • Kadam, K.L. (2002). Environmental implications of power generation via coal– microalgae cofiring. Energy 27(10), 905–922.
  • Khan, A.M., Obaid, M., & Sultana, R. (2015). Production of Biodiesel from Marine Algae to Mitigate Environmental Pollution. Journal of the Chemical Society of Pakistan, 37(03), 612-620.
  • Kim, Y.J., Park, J.H., Hong, J.Y., Jang, H.C., Oh, S.G., Kim, S.H., & Yoon, J.J. (2012a). Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresource Technology, 108, 83-88.
  • Kim, S.R., Ha, S.J., Wei, N., Oh, E.J., & Jin, Y.S. (2012b). Simultaneous co-fermentation of mixed sugars: A promising strategy for producing cellulosic ethanol. Trends in Biotechnology, 30(5), 274-282.
  • Kim, S. K., Kim, H., & Ra, C.H. (2013). Ethanol Production from Seaweed (Undaria pinnatifida) Using Yeast Acclimated to Specific Sugars. Biotechnology and Bioprocess Engineering, 18(3), 533-537.
  • Kim, S. K., Ra, C.H., Kim, Y.J., Lee, S.Y., & Jeong, G.T. (2015). Effects of galactose adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria verrucosa. Bioprocess and Biosystems Engineering, 38(9), 1715–1722.
  • Leite, G.B., Abdelaziz, A.E.M., & Hallenbeck, P.C. (2013). Algal biofuels: Challenges and opportunities, Bioresource Technology, 145, 134–141.
  • Larkum, A.W., Ross, I.L., Kruse, O., & Hankamer, B. (2011). Selection, breeding and engineering of microalgae for Bioenergy and biofuel production. Trends in Biotechnology, 30(4), 198–205.
  • Lee, J.H., & Lee, S.M. (2012). Ethanol fermentation for main sugar components of brown-algae using various yeasts. Journal of Industrial and Engineering Chemistry, 18(1) 16-18.
  • López-Contreras, A.M., van der Wal, H., Sperber, B.L.H.M., Houweling-Tan, B., Barker, R.R.C., & Brandenburg, W. (2013). Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresource Technology, 128, 431-437.
  • Mata, T.M., Martins, A.A., & Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable Sustainable Energy Reviews, 14(1), 217–232.
  • McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. Bioresource Technology, 83, 47–54.
  • Miao, X.L., & Wu, Q.Y. (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of biotechnology, 110(1), 85–93.
  • Melis, A. (2002). Green alga hydrogen production: progress, challenges and prospects. International Journal of Hydrogen Energy, 27(11-12), 1217–1228.
  • Meinita, M.D.N., Hong, Y.K., & Jeong, G.T. (2012a). Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Bioprocess and Biosystems Engineering, 35(1), 93–98.
  • Meinita, M.D.N., Kang, J.Y., Jeong, G. T., Koo, H.M., Park, S.M., & Hong, Y.K. (2012b). Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). Journal of Applied Phycology, 24(4), 857–862.
  • Nguyen, T.H.M., & Vu, H.V. (2012). Bioethanol production from marine algae biomass: prospect and troubles. Journal of Vietnamase Environment, 3(1): 25–29.
  • Özdemir, E. D., Härdtlein, M., & Eltrop, L. (2009). Land Substitution Effects of Biofuel Side Products and its effect on the Area Requirement for EU 2020 Biofuel Targets. Energy Policy, 37(8), 2986-2996
  • Pitman, J.K., Dean, A.P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102, 17–25.
  • Rittmann, B.E. (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and bioengineering, 100(2), 203–212.
  • Sirajunnisa, A.R., & Surendhiran, D. (2016). Algae – A quintessential and positive resource of bioethanol production: A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 248–267.
  • Singh, A., Nigam, P.S., & Murphy, J.D. (2011). Renewable fuels from algae: an answer to debatable land based fuels. Bioresource Technology, 102, 10–16.
  • Trung, V.T., Ly, B.M., Hau, L.N., & Hnag, N.T. (2013). Research to Produce Ethanol from Seaweed Biomass Cladophora sp. Journal of Materials Science and Engineering B 3, 10, 670-676.
  • Ulah, K., Ahmad, M., Sofia Sharma, V.K., Lu, P., Harvey, A., Zafar, M., & Sultana S. (2015). Assessing the Potential of algal Biomass opportunities for Bioenergy industry: a review. Fuel, 143, 414–423.
  • Ünlü, D., & Durmaz Hilmioğlu, N. (2014). Yenilenebilir Enerji Kaynağı Olarak Biyokütleden Biyoetanol Üretiminin İncelenmesi. Uluslararası Enerji ve Güvenlik Kongresi, Kocaeli Üniversitesi 23 – 24 Eylül.
  • Wi, S.G., Kim, H.J., Mahadevan, S.A., Yang, D.J., & Bae, H.J. (2009). The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresource Technology, 100, 6658–6660.
  • Wu, F.C., Wu, J.Y., Liao, Y.J., Wang, M.Y., & Shih, I.L. (2014). Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresource Technology, 156, 123–31.
  • Wang, G., Wang, X., & Liu, X. (2011). Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. Journal of Integrative Plant Biology, 53(3), 246–252.
  • Yiğitoğlu, M., Ünal, M., & Gökgöz, M. (2012). Alternatif Bir Enerji Kaynağı Olarak Biyoetanol. Kırıkkale Üniversitesi Fen Edebiyat Fakültesi, Bilimde Gelişmeler Dergisi, 1(1), 11-22.
  • Yoza, B.A., & Masutani, E.M., 2013. The analysis of macroalgae biomass found around Hawaii for bioethanol production. Environmental Technology, 34(13-14), 1859-1867.

Bioethanol Production from Cystoseira barbata (Stackhouse) C. Agardh, 1820 Taxa with a New Yeast.

Yıl 2019, , 524 - 534, 16.12.2019
https://doi.org/10.22392/actaquatr.564986

Öz

In this study, bioethanol production was investigated by using Cystoseira barbata taxa belonging to the brown algae
collected from the coasts of the Dardanelles. Bioethanol is valuable as a renewable, economic and sustainable energy source.
It is also known to reduce CO2 emissions. Firstly, sodium alginate obtained from this taxon was first used, and then tallus itself
was used by grinding. Yeast 1, yeast 2 and commercial yeast strains were used as yeast. Depending on the increase in the
amount of CO2, the measurement interval was determined and minute, hourly and daily measurements were made. As a result
of the measurements, the three yeast samples used C. barbata taxa as a source of carbohydrates. However, differences in usage
periods of carbohydrates source were observed. The yeast, which uses the algae sample for the longest period of time, is yeast
called yeast1. Yeast, called yeast 2, is determined to reach 10000 ppm on the third day. In the study, it was found that yeast
called yeast 2 which is the most efficient and has an effect in the shortest time in the yeasts used.

Kaynakça

  • Amin, S, (2009). Review on biofuel oil and gas production processes from microalgae. Energy Conversion and Management 50(7), 1834–1840.
  • Adams, J.M., Gallagher, J.A., & Donnison, I.S. (2009). Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. Journal of Applied Phycology, 21(5), 569–574.
  • Adams, J.M., Toop, T.A., Gallagher, J.M., & Donnison, I.S. (2011). Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresource Technology, 102(21), 9976-9984.
  • Ahmed, A.S., Khan, S., Hamdan, S., Rahman, R., Kalam, A., Masjuki, H.H., & Mahlia, T.M.I. (2010). Biodiesel Production from Macro Algae as a Green Fuel for Diesel Engine. Journal of Energy & Environment, l (2), 1-5.
  • Başak, S., Özgün, D., & Çınar, Ö. (2014). Alglerle Biyoyakıt Üretiminde Atıksuyun Kullanımı. Su Ürünleri Dergisi, 29(1), 93-102
  • Borines, M.G., de Leon, R.L., & Cuello, J.L. (2013). Bioethanol production from the macroalgae Sargassum spp. Bioresource Technology, 138, 22-29.
  • Bruhn, A., Dahl, J., Nielsen, H.B., Nikolaisen, L., Rasmussen, M.B., Markager, S., Olesen, B., Arias, C., & Jensen, P.D. (2011). Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion, Bioresource Technology, 102, 2595-2604.
  • Chaudhary, L., Pradhan, P., Soni, N., Singh, P., & Tiwari, A. (2014). Algae as a feed stock for bioethanol production: new entrance in biofuel world. International Journal of Chemtech Research, 6(2): 1381–1389.
  • Delgenes, J.P., Moletta, R., & Navarro, J. (1988). Fermentation of D-xylose, D-glucose and L-arabinose mixture by Pichia stipitis Y 7124: Sugar tolerance. Applied Microbiology and Biotechnology, 29(2), 155-161.
  • Demain, A., Newcomb, M., & Wu, J.H.D. (2005). Cellulase, clostridia and ethanol. Microbiology and Molecular Biology Reviews, 69(1), 124–154.
  • Demirbas, A. (2009). Biofuels securing the planet’s future energy needs. Energy Conversion and Management, 50(9), 2239–2249.
  • Fu, C.C., Hung, T.C., Chen, J.Y., Su, C.H., & Wu, W.T. (2010). Hydrolysis of microalgae cell walls for production of reducing sugar and lipid extraction. Bioresource Technology, 101(22), 8750–8754.
  • Food and Agriculture Organization of the United Nations (FAO). (2017). Available at: http://www.fao.org/bioenergy/aquaticbiofuels/en/
  • Gallagher, J.A., Adams, J.M.M., Toop, T.A., & Donnison, I.S. (2011). Seasonal variation in Laminaria digitata and its impact on biochemical conversion routes to biofuels. Bioresource Technology, 102(21), 9976–9984.
  • Georgianna, D.R., & Mayfield, S.P. (2012). Exploiting diversity and synthetic biology for the production of algal biofuels. Nature, 488(7411), 329–335.
  • Hacisalihoglu, B., Kirtay, E., & Demirbas, A. (2009). Historical role of Turkey in petroleum between Caspian Sea Basin and the Middle East. Society Political Economy Culturel Research, 1, 1-25.
  • Hong, I.K., Jeon, H., & Lee, S.B. (2014). Comparison of red, brown and green seaweeds on enzymatic saccharification process. Journal of Industrial Engineering Chemistry, 20(5), 2687–2691.
  • Horn, S.J., Aasen, I.M., & Østgaard, K. (2000). Production of ethanol from mannitol by Zymnobacter palmae. Journal of Industrial Microbiology & Biotechnology, 24(1), 51–57.
  • Jang, J.S., Cho, Y., Jeong, G.T., & Kim, S.K. (2012). Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosystems Engineering, 35(1-2), 11–18.
  • John, R.P., Anisha, G.S., Nampoothiri, K.M., & Pandey, A. (2011). Micro and macro algal biomass: a Renewable source for bioethanol. Bioresource Technology, 102(1), 186–193.
  • Jung, K.H., Ji-Hyeon, Y., Lee, S.E., Choi, W.Y., Kong, D.H., & Lee, H.Y. (2011). Repeated-Batch Operation of Surface-Aerated Fermentor for Bioethanol Production from the Hydrolysate of Seaweed Sargassum sagamianum. Journal of Microbiology and Biotechnology, 21(3): 323–331.
  • Khambhaty, Y., Kaplana, M., Gandhi, M.R., Thampy, S., Maiti, P., Brahmbhatt, H., Eswaran, K., & Ghosh, P.K. (2012). Kappaphycus alvarezzii as asource of bioethanol. Bioresource Technology, 103(1), 180–185.
  • Koçoğlu, Z.G., 2010. Çanakkale Boğazındaki bazı kahverengi alglerde alginat miktarlarının yıllık değişimi. Çanakkale Onsekiz Mart Üniversitesi, Fen Bilimleri Enstitüsü,Yüksek Lisans Tezi, Çanakkale.
  • Kadam, K.L. (2002). Environmental implications of power generation via coal– microalgae cofiring. Energy 27(10), 905–922.
  • Khan, A.M., Obaid, M., & Sultana, R. (2015). Production of Biodiesel from Marine Algae to Mitigate Environmental Pollution. Journal of the Chemical Society of Pakistan, 37(03), 612-620.
  • Kim, Y.J., Park, J.H., Hong, J.Y., Jang, H.C., Oh, S.G., Kim, S.H., & Yoon, J.J. (2012a). Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresource Technology, 108, 83-88.
  • Kim, S.R., Ha, S.J., Wei, N., Oh, E.J., & Jin, Y.S. (2012b). Simultaneous co-fermentation of mixed sugars: A promising strategy for producing cellulosic ethanol. Trends in Biotechnology, 30(5), 274-282.
  • Kim, S. K., Kim, H., & Ra, C.H. (2013). Ethanol Production from Seaweed (Undaria pinnatifida) Using Yeast Acclimated to Specific Sugars. Biotechnology and Bioprocess Engineering, 18(3), 533-537.
  • Kim, S. K., Ra, C.H., Kim, Y.J., Lee, S.Y., & Jeong, G.T. (2015). Effects of galactose adaptation in yeast for ethanol fermentation from red seaweed, Gracilaria verrucosa. Bioprocess and Biosystems Engineering, 38(9), 1715–1722.
  • Leite, G.B., Abdelaziz, A.E.M., & Hallenbeck, P.C. (2013). Algal biofuels: Challenges and opportunities, Bioresource Technology, 145, 134–141.
  • Larkum, A.W., Ross, I.L., Kruse, O., & Hankamer, B. (2011). Selection, breeding and engineering of microalgae for Bioenergy and biofuel production. Trends in Biotechnology, 30(4), 198–205.
  • Lee, J.H., & Lee, S.M. (2012). Ethanol fermentation for main sugar components of brown-algae using various yeasts. Journal of Industrial and Engineering Chemistry, 18(1) 16-18.
  • López-Contreras, A.M., van der Wal, H., Sperber, B.L.H.M., Houweling-Tan, B., Barker, R.R.C., & Brandenburg, W. (2013). Production of acetone, butanol, and ethanol from biomass of the green seaweed Ulva lactuca. Bioresource Technology, 128, 431-437.
  • Mata, T.M., Martins, A.A., & Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable Sustainable Energy Reviews, 14(1), 217–232.
  • McKendry, P. (2002). Energy production from biomass (part 2): conversion technologies. Bioresource Technology, 83, 47–54.
  • Miao, X.L., & Wu, Q.Y. (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of biotechnology, 110(1), 85–93.
  • Melis, A. (2002). Green alga hydrogen production: progress, challenges and prospects. International Journal of Hydrogen Energy, 27(11-12), 1217–1228.
  • Meinita, M.D.N., Hong, Y.K., & Jeong, G.T. (2012a). Detoxification of acidic catalyzed hydrolysate of Kappaphycus alvarezii (cottonii). Bioprocess and Biosystems Engineering, 35(1), 93–98.
  • Meinita, M.D.N., Kang, J.Y., Jeong, G. T., Koo, H.M., Park, S.M., & Hong, Y.K. (2012b). Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii). Journal of Applied Phycology, 24(4), 857–862.
  • Nguyen, T.H.M., & Vu, H.V. (2012). Bioethanol production from marine algae biomass: prospect and troubles. Journal of Vietnamase Environment, 3(1): 25–29.
  • Özdemir, E. D., Härdtlein, M., & Eltrop, L. (2009). Land Substitution Effects of Biofuel Side Products and its effect on the Area Requirement for EU 2020 Biofuel Targets. Energy Policy, 37(8), 2986-2996
  • Pitman, J.K., Dean, A.P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102, 17–25.
  • Rittmann, B.E. (2008). Opportunities for renewable bioenergy using microorganisms. Biotechnology and bioengineering, 100(2), 203–212.
  • Sirajunnisa, A.R., & Surendhiran, D. (2016). Algae – A quintessential and positive resource of bioethanol production: A comprehensive review. Renewable and Sustainable Energy Reviews, 66, 248–267.
  • Singh, A., Nigam, P.S., & Murphy, J.D. (2011). Renewable fuels from algae: an answer to debatable land based fuels. Bioresource Technology, 102, 10–16.
  • Trung, V.T., Ly, B.M., Hau, L.N., & Hnag, N.T. (2013). Research to Produce Ethanol from Seaweed Biomass Cladophora sp. Journal of Materials Science and Engineering B 3, 10, 670-676.
  • Ulah, K., Ahmad, M., Sofia Sharma, V.K., Lu, P., Harvey, A., Zafar, M., & Sultana S. (2015). Assessing the Potential of algal Biomass opportunities for Bioenergy industry: a review. Fuel, 143, 414–423.
  • Ünlü, D., & Durmaz Hilmioğlu, N. (2014). Yenilenebilir Enerji Kaynağı Olarak Biyokütleden Biyoetanol Üretiminin İncelenmesi. Uluslararası Enerji ve Güvenlik Kongresi, Kocaeli Üniversitesi 23 – 24 Eylül.
  • Wi, S.G., Kim, H.J., Mahadevan, S.A., Yang, D.J., & Bae, H.J. (2009). The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresource Technology, 100, 6658–6660.
  • Wu, F.C., Wu, J.Y., Liao, Y.J., Wang, M.Y., & Shih, I.L. (2014). Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass. Bioresource Technology, 156, 123–31.
  • Wang, G., Wang, X., & Liu, X. (2011). Two-stage hydrolysis of invasive algal feedstock for ethanol fermentation. Journal of Integrative Plant Biology, 53(3), 246–252.
  • Yiğitoğlu, M., Ünal, M., & Gökgöz, M. (2012). Alternatif Bir Enerji Kaynağı Olarak Biyoetanol. Kırıkkale Üniversitesi Fen Edebiyat Fakültesi, Bilimde Gelişmeler Dergisi, 1(1), 11-22.
  • Yoza, B.A., & Masutani, E.M., 2013. The analysis of macroalgae biomass found around Hawaii for bioethanol production. Environmental Technology, 34(13-14), 1859-1867.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapısal Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Aylin Çağman Bu kişi benim

Hüseyin Erduğan 0000-0002-7047-6640

Yayımlanma Tarihi 16 Aralık 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Çağman, A., & Erduğan, H. (2019). Yeni Bir Maya ile Cystoseira barbata (Stackhouse) C. Agardh, 1820 Taksonundan Biyoetanol Üretimi. Acta Aquatica Turcica, 15(4), 524-534. https://doi.org/10.22392/actaquatr.564986