Araştırma Makalesi
BibTex RIS Kaynak Göster

Malathionun Gammarus pulex (Tatlı Su Amphipodu)’te Asetilkolinesteraz Aktivitesi Üzerine Akut Etkisi

Yıl 2020, , 202 - 208, 01.06.2020
https://doi.org/10.22392/actaquatr.628330

Öz

Bu çalışmada, organofosfat insektisit malathionun subletal konsantrasyonlarının Gammarus pulex'teki AChE aktivitesi üzerine akut (24 ve 48 saat) etkisi incelenmiştir. Bu amaçla, G. pulex'e malathionun iki farklı sublethal konsantrasyonu (0.1 ve 0.2 mg l-1) 24 ve 48 saat boyunca uygulandı. 24 ve 48 saat malathion maruziyetinin sonunda G. pulex örnekleri alındı. Alınan örneklerde AChE enzim aktivitesi ve protein düzeyi belirlenerek, spesifik AChE enzim aktivitesi hesaplandı. 

Malathionunun sublethal konsantrasyonları G. pulex'te AChE aktivitesininin zamana bağlı artan inhibisyonuna neden oldu. 0.1 mg l-1 malathion konsantrasyonuna maruz kalan grupta, AChE'nin inhibisyonu, kontrol ile karşılaştırıldığında, 24 saatte %50 ve 48 saatte %74 olarak tespit edildi. Benzer şekilde, 0.2 mg l-1 malathion konsantrasyonuna maruz kalan grupta da kontrol ile karşılaştırıldığında sırasıyla 24 ve 48 saatte % 60 ve % 68 AChE inhibisyonu gözlendi.        
Sonuç olarak, G. pulex'in malathiona 24 ve 48 saat boyunca maruz kalması AChE aktivitesinin yüksek oranda inhibe edilmesine neden olmuştur. Ayrıca, G.pulex'teki % 74'e kadar AChE inhibisyon seviyelerinin akut ölüme neden olmadığını ve G. pulex'teki AChE aktivitesinin ölçümünün akut malathion maruziyetinin ve etkilerinin biyobelirteci olacağını göstermektedir.

Kaynakça

  • Anderson, TD, and Lydy, MJ, 2002. Increased toxicity to invertebrates associated with a mixture of atrazine and organophosphate insecticides. Environmental Toxicology and Chemistry: An International Journal, 21 (7): 1507-1514.
  • Atamanalp, M., & Yanık, T. (2001). Pestisitlerin Cyprinidae'lere Toksik Etkileri. Su Ürünleri Dergisi, 18(3). 555-563s.
  • Barata, C., Solayan, A., & Porte, C. (2004). Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquatic toxicology, 66(2), 125-139.
  • Barr, D. B., & Needham, L. L. (2002). Analytical methods for biological monitoring of exposure to pesticides: a review. Journal of Chromatography B, 778(1-2), 5-29.
  • Day, K. E., & Scott, I. M. (1990). Use of acetylcholinesterase activity to detect sublethal toxicity in stream invertebrates exposed to low concentrations of organophosphate insecticides. Aquatic Toxicology, 18(2), 101-113.
  • Demirci, Ö. (2018) İmidakloprit ve Asetamiprit’in Gammarus kischineffensis (Amphipoda: Crustacea) Üzerine Akut Toksik Etkisinin Değerlendirilmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(3), 85-92.
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88-95.
  • Fahmy, G. H. (2012). Malathion toxicity: Effect on some metabolic activities in Oreochromis niloticus, the tilapia fish. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(1), 52-55.
  • Feng, T., Li, Z. B., Guo, X. Q., & Guo, J. P. (2008). Effects of trichlorfon and sodium dodecyl sulphate on antioxidant defense system and acetylcholinesterase of Tilapia nilotica in vitro. Pesticide Biochemistry and Physiology, 92(3), 107-113.
  • Forget, J., Beliaeff, B., & Bocquené, G. (2003). Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants. Aquatic Toxicology, 62(3), 195-204.
  • Forrow, D. M., & Maltby, L. (2000). Toward a mechanistic understanding of contaminant‐induced changes in detritus processing in streams: Direct and indirect effects on detritivore feeding. Environmental Toxicology and Chemistry: An International Journal, 19(8), 2100-2106.
  • Fulton, M. H., & Key, P. B. (2001). Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry: An International Journal, 20(1), 37-45.
  • Gauthier, P. T., Norwood, W. P., Prepas, E. E., & Pyle, G. G. (2016). Behavioural alterations from exposure to Cu, phenanthrene, and Cu-phenanthrene mixtures: linking behaviour to acute toxic mechanisms in the aquatic amphipod, Hyalella azteca. Aquatic Toxicology, 170, 377-383.
  • Giesy, J. P., Solomon, K. R., Coats, J. R., Dixon, K. R., Giddings, J. M., & Kenaga, E. E. (1999). Chlorpyrifos: ecological risk assessment in North American aquatic environments. In Reviews of environmental contamination and toxicology (pp. 1-129). Springer, New York, NY.
  • Giri, A., Yadav, S. S., Giri, S., & Sharma, G. D. (2012). Effect of predator stress and malathion on tadpoles of Indian skittering frog. Aquatic toxicology, 106, 157-163.
  • Gueltekin, Zuhal, Rahmi Aydin, and Carola Winkelmann. "Macroinvertebrate composition in the metarhithral zones of the Munzur and Pülümür rivers: a preliminary study." Turkish Journal of Zoology 41.6 (2017): 1100-1104.
  • Hamed, H. S. (2015). Impact of a short-term malathion exposure of Nile tilapia,(Oreochromis niloticus): the protective role of selenium. International journal of environmental monitoring and analysis, 3, 30-37.
  • Hyne, R. V., & Maher, W. A. (2003). Invertebrate biomarkers: links to toxicosis that predict population decline. Ecotoxicology and environmental safety, 54(3), 366-374.
  • Kirby, M. F., Morris, S., Hurst, M., Kirby, S. J., Neall, P., Tylor, T., & Fagg, A. (2000). The use of cholinesterase activity in flounder (Platichthys flesus) muscle tissue as a biomarker of neurotoxic contamination in UK estuaries. Marine Pollution Bulletin, 40(9), 780-791.
  • Kozlovskaya, V. I., Mayer, F. L., Menzikova, O. V., & Chuyko, G. M. (1993). Cholinesterases of aquatic animals. In Reviews of environmental contamination and toxicology (pp. 117-142). Springer, New York, NY.
  • Kristoff, G., Guerrero, N. V., de D’Angelo, A. M. P., & Cochón, A. C. (2006). Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus. Toxicology, 222(3), 185-194.
  • Kuhn, K., & Streit, B. (1994). Detecting sublethal effects of organophosphates by measuring acetylcholinesterase activity in Gammarus. Bulletin of environmental contamination and toxicology, 53(3), 398-404.
  • MacNeil, C., Dick, J. T., Bigsby, E., Elwood, R. W., Montgomery, W. I., Gibbins, C. N., & Kelly, D. W. (2002). The validity of the Gammarus: Asellus ratio as an index of organic pollution: abiotic and biotic influences. Water research, 36(1), 75-84.
  • McLoughlin, N., Yin, D., Maltby, L., Wood, R. M., & Yu, H. (2000). Evaluation of sensitivity and specificity of two crustacean biochemical biomarkers. Environmental Toxicology and Chemistry: An International Journal, 19(8), 2085-2092.
  • Yonar, S. M. (2013). Toxic effects of malathion in carp, Cyprinus carpio carpio: protective role of lycopene. Ecotoxicology and environmental safety, 97, 223-229.
  • Moulton, C. A., Fleming, W. J., & Purnell, C. E. (1996). Effects of two cholinesterase‐inhibiting pesticides on freshwater mussels. Environmental Toxicology and Chemistry: An International Journal, 15(2), 131-137.
  • Oruç, E. Ö., & Üner, N. (1999). Effects of 2, 4-Diamin on some parameters of protein and carbohydrate metabolisms in the serum, muscle and liver of Cyprinus carpio. Environmental Pollution, 105(2), 267-272.
  • Pala, A. & Serdar, O. (2018). Seasonal Variation of Acetylcholinesterase Activity as a Biomarker in Brain Tissue of Capoeta umbla in Pülümür Stream. Journal of Limnology and Freshwater Fisheries Research, 4(2), 98-102.
  • Printes, L. B., & Callaghan, A. (2004). A comparative study on the relationship between acetylcholinesterase activity and acute toxicity in Daphnia magna exposed to anticholinesterase insecticides. Environmental Toxicology and Chemistry: An International Journal, 23(5), 1241-1247.
  • Rinderhagen, M., Ritterhoff, J., & Zauke, G. P. (2000). Crustaceans as bioindicators. In Biomonitoring of Polluted Water-Reviews on Actual Topics. Trans Tech Publications-Scitech Publications, Environmental Research Forum (Vol. 9, pp. 161-194).
  • Serdar, O., Yildirim, N. C., Tatar, S., Yildirim, N., & Ogedey, A. (2018). Antioxidant biomarkers in Gammarus pulex to evaluate the efficiency of electrocoagulation process in landfill leachate treatment. Environmental Science and Pollution Research, 25(13), 12538-12544.
  • Svobodova, Z., Groch, L., Flajšhans, M., Vykusova, B., & Machova, J. (1997). Effect of long-term therapeutic bath in malachite green on common carp (Cyprinus carpio L.). Acta Veterinaria Brno, 66(2), 111-116.
  • Şahinkuşu, F, (2018). The Determination of Acute Toxicity on Gammarus pulex (L.,1758) of Malathion. Munzur University, Institute of Science, Tunceli, Turkey (in Turkish).
  • De la Torre, F. R., Ferrari, L., & Salibian, A. (2002). Freshwater pollution biomarker: response of brain acetylcholinesterase activity in two fish species. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 131(3), 271-280.
  • Uğurlu, P., Ünlü, E., & Satar, E. I. (2015). The toxicological effects of thiamethoxam on Gammarus kischineffensis (Schellenberg 1937)(Crustacea: Amphipoda). Environmental toxicology and pharmacology, 39(2), 720-726.
  • Varó, I., Navarro, J. C., Amat, F., & Guilhermino, L. (2002). Characterisation of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica. Chemosphere, 48(6), 563-569.
  • Xuereb, B., Noury, P., Felten, V., Garric, J., & Geffard, O. (2007). Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda): characterization and effects of chlorpyrifos. Toxicology, 236(3), 178-189.
  • Xuereb, B., Lefèvre, E., Garric, J., & Geffard, O. (2009). Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): linking AChE inhibition and behavioural alteration. Aquatic Toxicology, 94(2), 114-122.

The Acute Effect of Malathion on Acetylcholinesterase Activity in Gammarus pulex (Freshwater Amphipoda)

Yıl 2020, , 202 - 208, 01.06.2020
https://doi.org/10.22392/actaquatr.628330

Öz

 In this study, the acute (24 and 48 h) effect of sublethal concentrations of malathion, organophosphates insecticide, on the AChE activity in Gammarus pulex was investigated.
For this purpose, two sublethal concentrations of malathion (0.1 and 0.2 mg l-1) were applied to G. pulex for 24 and 48 h. After 24 and 48 hours of malathion exposure, G. pulex samples were taken. In the samples taken, AChE enzyme activity and protein level were determined and specific AChE enzyme activity was calculated.
Sublethal concentrations of malathion caused time-dependent increased inhibition of AChE activity in G. pulex. In the group exposed to 0.1 mg l-1 malathion concentration, inhibition of AChE was detected as 50% at 24 h and 74% at 48 h, compared to control. Similarly, in the group exposed to 0.2 mg l-1 malathion concentration, 60% and 68% AChE inhibition at 24 and 48 h were observed, respectively, compared to the control.
As a result, acute exposure of G. pulex to malathion for 24 and 48 h caused in the high rate inhibition of the AChE activity. Further, the results show that up to 74% AChE inhibition levels in G.pulex do not cause acute death, and measurement of AChE activity in G. pulex will be the biomarker of acute malathion exposure and effects.

Kaynakça

  • Anderson, TD, and Lydy, MJ, 2002. Increased toxicity to invertebrates associated with a mixture of atrazine and organophosphate insecticides. Environmental Toxicology and Chemistry: An International Journal, 21 (7): 1507-1514.
  • Atamanalp, M., & Yanık, T. (2001). Pestisitlerin Cyprinidae'lere Toksik Etkileri. Su Ürünleri Dergisi, 18(3). 555-563s.
  • Barata, C., Solayan, A., & Porte, C. (2004). Role of B-esterases in assessing toxicity of organophosphorus (chlorpyrifos, malathion) and carbamate (carbofuran) pesticides to Daphnia magna. Aquatic toxicology, 66(2), 125-139.
  • Barr, D. B., & Needham, L. L. (2002). Analytical methods for biological monitoring of exposure to pesticides: a review. Journal of Chromatography B, 778(1-2), 5-29.
  • Day, K. E., & Scott, I. M. (1990). Use of acetylcholinesterase activity to detect sublethal toxicity in stream invertebrates exposed to low concentrations of organophosphate insecticides. Aquatic Toxicology, 18(2), 101-113.
  • Demirci, Ö. (2018) İmidakloprit ve Asetamiprit’in Gammarus kischineffensis (Amphipoda: Crustacea) Üzerine Akut Toksik Etkisinin Değerlendirilmesi. Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 8(3), 85-92.
  • Ellman, G. L., Courtney, K. D., Andres Jr, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical pharmacology, 7(2), 88-95.
  • Fahmy, G. H. (2012). Malathion toxicity: Effect on some metabolic activities in Oreochromis niloticus, the tilapia fish. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(1), 52-55.
  • Feng, T., Li, Z. B., Guo, X. Q., & Guo, J. P. (2008). Effects of trichlorfon and sodium dodecyl sulphate on antioxidant defense system and acetylcholinesterase of Tilapia nilotica in vitro. Pesticide Biochemistry and Physiology, 92(3), 107-113.
  • Forget, J., Beliaeff, B., & Bocquené, G. (2003). Acetylcholinesterase activity in copepods (Tigriopus brevicornis) from the Vilaine River estuary, France, as a biomarker of neurotoxic contaminants. Aquatic Toxicology, 62(3), 195-204.
  • Forrow, D. M., & Maltby, L. (2000). Toward a mechanistic understanding of contaminant‐induced changes in detritus processing in streams: Direct and indirect effects on detritivore feeding. Environmental Toxicology and Chemistry: An International Journal, 19(8), 2100-2106.
  • Fulton, M. H., & Key, P. B. (2001). Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry: An International Journal, 20(1), 37-45.
  • Gauthier, P. T., Norwood, W. P., Prepas, E. E., & Pyle, G. G. (2016). Behavioural alterations from exposure to Cu, phenanthrene, and Cu-phenanthrene mixtures: linking behaviour to acute toxic mechanisms in the aquatic amphipod, Hyalella azteca. Aquatic Toxicology, 170, 377-383.
  • Giesy, J. P., Solomon, K. R., Coats, J. R., Dixon, K. R., Giddings, J. M., & Kenaga, E. E. (1999). Chlorpyrifos: ecological risk assessment in North American aquatic environments. In Reviews of environmental contamination and toxicology (pp. 1-129). Springer, New York, NY.
  • Giri, A., Yadav, S. S., Giri, S., & Sharma, G. D. (2012). Effect of predator stress and malathion on tadpoles of Indian skittering frog. Aquatic toxicology, 106, 157-163.
  • Gueltekin, Zuhal, Rahmi Aydin, and Carola Winkelmann. "Macroinvertebrate composition in the metarhithral zones of the Munzur and Pülümür rivers: a preliminary study." Turkish Journal of Zoology 41.6 (2017): 1100-1104.
  • Hamed, H. S. (2015). Impact of a short-term malathion exposure of Nile tilapia,(Oreochromis niloticus): the protective role of selenium. International journal of environmental monitoring and analysis, 3, 30-37.
  • Hyne, R. V., & Maher, W. A. (2003). Invertebrate biomarkers: links to toxicosis that predict population decline. Ecotoxicology and environmental safety, 54(3), 366-374.
  • Kirby, M. F., Morris, S., Hurst, M., Kirby, S. J., Neall, P., Tylor, T., & Fagg, A. (2000). The use of cholinesterase activity in flounder (Platichthys flesus) muscle tissue as a biomarker of neurotoxic contamination in UK estuaries. Marine Pollution Bulletin, 40(9), 780-791.
  • Kozlovskaya, V. I., Mayer, F. L., Menzikova, O. V., & Chuyko, G. M. (1993). Cholinesterases of aquatic animals. In Reviews of environmental contamination and toxicology (pp. 117-142). Springer, New York, NY.
  • Kristoff, G., Guerrero, N. V., de D’Angelo, A. M. P., & Cochón, A. C. (2006). Inhibition of cholinesterase activity by azinphos-methyl in two freshwater invertebrates: Biomphalaria glabrata and Lumbriculus variegatus. Toxicology, 222(3), 185-194.
  • Kuhn, K., & Streit, B. (1994). Detecting sublethal effects of organophosphates by measuring acetylcholinesterase activity in Gammarus. Bulletin of environmental contamination and toxicology, 53(3), 398-404.
  • MacNeil, C., Dick, J. T., Bigsby, E., Elwood, R. W., Montgomery, W. I., Gibbins, C. N., & Kelly, D. W. (2002). The validity of the Gammarus: Asellus ratio as an index of organic pollution: abiotic and biotic influences. Water research, 36(1), 75-84.
  • McLoughlin, N., Yin, D., Maltby, L., Wood, R. M., & Yu, H. (2000). Evaluation of sensitivity and specificity of two crustacean biochemical biomarkers. Environmental Toxicology and Chemistry: An International Journal, 19(8), 2085-2092.
  • Yonar, S. M. (2013). Toxic effects of malathion in carp, Cyprinus carpio carpio: protective role of lycopene. Ecotoxicology and environmental safety, 97, 223-229.
  • Moulton, C. A., Fleming, W. J., & Purnell, C. E. (1996). Effects of two cholinesterase‐inhibiting pesticides on freshwater mussels. Environmental Toxicology and Chemistry: An International Journal, 15(2), 131-137.
  • Oruç, E. Ö., & Üner, N. (1999). Effects of 2, 4-Diamin on some parameters of protein and carbohydrate metabolisms in the serum, muscle and liver of Cyprinus carpio. Environmental Pollution, 105(2), 267-272.
  • Pala, A. & Serdar, O. (2018). Seasonal Variation of Acetylcholinesterase Activity as a Biomarker in Brain Tissue of Capoeta umbla in Pülümür Stream. Journal of Limnology and Freshwater Fisheries Research, 4(2), 98-102.
  • Printes, L. B., & Callaghan, A. (2004). A comparative study on the relationship between acetylcholinesterase activity and acute toxicity in Daphnia magna exposed to anticholinesterase insecticides. Environmental Toxicology and Chemistry: An International Journal, 23(5), 1241-1247.
  • Rinderhagen, M., Ritterhoff, J., & Zauke, G. P. (2000). Crustaceans as bioindicators. In Biomonitoring of Polluted Water-Reviews on Actual Topics. Trans Tech Publications-Scitech Publications, Environmental Research Forum (Vol. 9, pp. 161-194).
  • Serdar, O., Yildirim, N. C., Tatar, S., Yildirim, N., & Ogedey, A. (2018). Antioxidant biomarkers in Gammarus pulex to evaluate the efficiency of electrocoagulation process in landfill leachate treatment. Environmental Science and Pollution Research, 25(13), 12538-12544.
  • Svobodova, Z., Groch, L., Flajšhans, M., Vykusova, B., & Machova, J. (1997). Effect of long-term therapeutic bath in malachite green on common carp (Cyprinus carpio L.). Acta Veterinaria Brno, 66(2), 111-116.
  • Şahinkuşu, F, (2018). The Determination of Acute Toxicity on Gammarus pulex (L.,1758) of Malathion. Munzur University, Institute of Science, Tunceli, Turkey (in Turkish).
  • De la Torre, F. R., Ferrari, L., & Salibian, A. (2002). Freshwater pollution biomarker: response of brain acetylcholinesterase activity in two fish species. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 131(3), 271-280.
  • Uğurlu, P., Ünlü, E., & Satar, E. I. (2015). The toxicological effects of thiamethoxam on Gammarus kischineffensis (Schellenberg 1937)(Crustacea: Amphipoda). Environmental toxicology and pharmacology, 39(2), 720-726.
  • Varó, I., Navarro, J. C., Amat, F., & Guilhermino, L. (2002). Characterisation of cholinesterases and evaluation of the inhibitory potential of chlorpyrifos and dichlorvos to Artemia salina and Artemia parthenogenetica. Chemosphere, 48(6), 563-569.
  • Xuereb, B., Noury, P., Felten, V., Garric, J., & Geffard, O. (2007). Cholinesterase activity in Gammarus pulex (Crustacea Amphipoda): characterization and effects of chlorpyrifos. Toxicology, 236(3), 178-189.
  • Xuereb, B., Lefèvre, E., Garric, J., & Geffard, O. (2009). Acetylcholinesterase activity in Gammarus fossarum (Crustacea Amphipoda): linking AChE inhibition and behavioural alteration. Aquatic Toxicology, 94(2), 114-122.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Bilimleri
Bölüm Araştırma Makaleleri
Yazarlar

Ayşegül Pala 0000-0002-5269-023X

Osman Serdar 0000-0003-1744-8883

Rahmi Aydın Bu kişi benim 0000-0002-3002-0892

Yayımlanma Tarihi 1 Haziran 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Pala, A., Serdar, O., & Aydın, R. (2020). The Acute Effect of Malathion on Acetylcholinesterase Activity in Gammarus pulex (Freshwater Amphipoda). Acta Aquatica Turcica, 16(2), 202-208. https://doi.org/10.22392/actaquatr.628330