Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of the Toxicity Activity of Bioactive Compounds of Some Geophytes against Brine Shrimp (Artemia salina L.)

Yıl 2021, Cilt: 17 Sayı: 2, 195 - 201, 01.06.2021
https://doi.org/10.22392/actaquatr.791297

Öz

Artemia salina L.is an important model organism for the world ecosystem, which is very sensitive, easily available, allows to work in the laboratory environment, is used in toxic effect studies, and gives safe results. This study was designed to evaluate the toxic effect of water extract of fresh and underground parts of some species of five geophyte genera (Arum rupicola var. virescens (Stapf) P.C. Boyce, Cyclamen cilicium Boiss. & Heldr, Gagea bohemica (Zauschn.) Schult. & Schult. f., Narcissus tazetta subsp. tazetta L., Paeonia kesrouanensis J. Thiébaut) against A. salina. All taxa were found to be more toxic in the fresh part than in the underground part. The fresh part of P. kesrouanensis was shown the highest toxic effect with 44.44 ± 2.78% (1.56 ± 0.13 mg/mL, LC50) and the underground part of N. tazetta subsp. tazetta was shown the lowest toxic effect with 8.33 ± 0.00% (294.68 ± 1.54 mg/mL, LC50). The underground part of N. tazetta subsp. tazetta and Gagea bohemica were not found toxic with > 1000 mg/ml, LC90. Based on the studies showing that A. salina toxic effect studies are related to insecticide and anticancer studies, it is seen that especially the fresh part of P. kesrouanensis has potential insecticide and anticancer properties, but more studies are needed.

Destekleyen Kurum

Scientific Research Projects (BAP) of Pamukkale University, Denizli, Turkey

Proje Numarası

Project No: 2019FEBE001

Kaynakça

  • Almeida, L.M., Prado, A.D.L., Xavier-Silva, K.R., Firmino, M.T., Paula, M.I.M., Gomes, P.N., Paula, J.A.M., & Bailão, E.F.L.C. (2020). Cytotoxic effect of Vernonanthura polyanthes leaves aqueous extracts, Brazilian Journal of Biology, In Press. http://dx.doi.org/10.1590/1519-6984.225281
  • AnalystSoft Inc. Released. (2015). Statplus Professional for Windows, Version 5.9.8.5, Walnut, CA: AnalystSoft Inc.
  • Ara, J., Sultana, V., Ehteshamul-Haque, S., Qasim, R., & Uddin, V. (1999). Cytotoxic Activity of Marine Macro-algae on Artemia salina (Brine Shrimp). Phytotherapy Research, 13, 304-307.
  • Artemia salina (Linnaeus, 1758) in GBIF Secretariat. (2019a). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2020-09-06.
  • Arum rupicola var. virescens (Stapf) P.C. Boyce in Plant List. (2012a). The Plant List, Published on the Internet; http://www.theplantlist.org/tpl1.1/record/kew-16375 (accessed 2020-05-07).
  • Asem, A., Nasrullah, R.P., & Patricio, D.L.R.E. (2010). The genus Artemia Leach, 1819 (Crustacea: Branchiopoda). I. True and false taxonomical descriptions. Latin American Journal of Aquatic Research, 38(3), 501-506. https://doi.org/10.3856/vol38-issue3-fulltext-14
  • Başbuğ, Y. (1999). Reproduction Characteristics of Artemia salina (L., 1758) in Tuz Lake. Turkish Journal of Zoology, 23(2), 635-640.
  • Carballo, J. L., Hernández-Inda, Z.L., Pérez, P., & García-Grávalos, M.D. (2002). A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnology, 2, 17. https://doi.org/10.1186/1472-6750-2-17
  • Carvalho F.D., & Moreira L.A. (2017). Why is Aedes aegypti Linnaeus so Successful as a Species? Neotropical Entomology, 46, 243–255. https://doi.org/10.1007/s13744-017-0520-4
  • Cyclamen cilicium Boiss. & Heldr. in Plant List. (2012b). The Plant List, Published on the Internet; http://www.theplantlist.org/tpl1.1/record/kew-2749712 (accessed 2020-05-07).
  • Demarchi, C.A., Silva, L.M., Niedźwiecka, A., Ślawska-Waniewska, A., Lewińska, S., Magro, J. D., Calisto, J.F.F., Martello, R., & Rodrigues, C.A. (2020). Nanoecotoxicology study of the response of magnetic O-Carboxymethylchitosan loaded silver nanoparticles on Artemia salina. Environmental Toxicology and Pharmacology, 74, 103298, https://doi.org/10.1016/j.etap.2019.103298
  • Gagea bohemica (Zauschn.) Schult. & Schult.f. in Plant List. (2012c). The Plant List, Published on the Internet; http://www.theplantlist.org/tpl1.1/record/kew-307157 (accessed 2020-05-07).
  • Hamrun, N., Nabilah, T., Hasyim, R., Ruslin, M., Damma, I., & Arianto, M.A.A. (2020). Toxicity Test of Bioactive Red Alga Extract Eucheuma spinosum on Shrimp Artemia salina Leach. Systematic Reviews in Pharmacy, 11(5), 672-676.
  • IBM Corp. Released. (2017). IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp. Itam, A., & Anna, L. (2020). Antioxidant activities, cytotoxic properties and total phenolic content of Syzygium malaccense (L.) Merr. & L.M. Perry leaves extracts: A West Sumatera Indonesian plant. Pakistan Journal of Pharmaceutical Sciences, 33(1), 175-181. https://doi.org/10.36721/PJPS.2020.33.1.REG.175-181.1 J ohari, S.A., Rasmussen, K., Gulumian, M., Ghazi-Khansari, M., Tetarazako, N., Kashiwada, S., Asghari, S., Park, J.W., & Yu, I.J. (2019). Introducing a new standardized nanomaterial environmental toxicity screening testing procedure, ISO/TS 20787: aquatic toxicity assessment of manufactured nanomaterials in saltwater Lakes using Artemia sp. nauplii. Toxicology Mechanisms and Methods, 29(2), 95–109. https://doi.org/10.1080/15376516.2018.1512695
  • Krishnaraju, A.V., Rao, T.V.N., Sundararaju, D., Vanisree, M., Tsay, H.S., & Subbaraju, G.V. (2005). Assessment of Bioactivity of Indian Medicinal Plants Using Brine Shrimp (Artemia salina) Lethality Assay. International Journal of Applied Science and Engineering, 3, 125-134.
  • Labbe, C., Castillo, M., & Connoly, J.D. (1993). Mono and sesquiterpenoids from Satureja gilliesii. Phytochemistry, 34, 441-444. https://doi.org/10.1016/0031-9422(93)80026-O
  • Luna, J.S., Santos, A.F., Lima, M.R.F., Omena, M.C., Mendonça, F.A.C., Bieber, L. W., & Sant’Ana, A. E. G. (2005). A study of the larvicidal and molluscicidal activities of some medicinal plants from northeast Brazil. Journal of Ethnopharmacology, 97(2), 199–206. https://doi.org/10.1016/j.jep.2004.10.004.
  • Maia-Neto, L.S., Amaral, A., Lucena, L.R.F., Magnata, S.S.L.P., Silva, E.B., Netto, A.M., Oliveira, A.F.M., & Souza, I.A. (2020). Gamma irradiation for enhancing active chemical compounds in leaf extracts of Libidibia ferrea (Leguminosae). Applied Radiation and Isotopes, 109306 (In Press). https://doi.org/10.1016/j.apradiso.2020.109306
  • Mayorga, P., Pérez, K.R., Cruz, S.M., & Cáceres, A. (2010). Comparison of bioassays using the anostracan crustaceans Artemia salina and Thamnocephalus platyurus for plant extract toxicity screening. Revista Brasileira de Farmacognosia, 20, 897-903. http://dx.doi.org/10.1590/S0102-695X2010005000029
  • McLaughlin J.L., Rogers L.L., & Anderson, J.E. (1998). The Use of Biological Assays to Evaluate Botanicals. Drug Information Journal, 32, 513-524. https://doi.org/10.1177/009286159803200223
  • McLaughlin, J.L., Chang, C.J., & Smith, D.L. (1991). Bench-Top Bioassays for the Discovery of Bioactive Natural Products: An Update. In: Rhaman, A.U., Ed. Studies in Natural Products Chemistry, Elsevier, Amsterdam, 383-409.
  • Montanher, A.B.P., Pizolatti, M., & Brighente, I.M.C. (2002). An application of the brine shrimp bioassay for general screening of Brazilian medicinal plants. Acta Farmaceutica Bonaerense, 21, 175-178.
  • Mughni, N.F.A., & Yusop, F.F.M. (2020). Brine Shrimp Lethality Assay of Methanolic Extract of Orthosiphon stamineus Benth. Leaves. SA Conference Proceeding: Industrial Revolution 4.0., 1(1), 23-28
  • Narcissus tazetta subsp. tazetta in GBIF Secretariat. (2019b). GBIF Backbone Taxonomy. Checklist dataset https://www.gbif.org/species/7227583 https://doi.org/10.15468/39omei accessed via GBIF.org on 2020-05-07.
  • Oberlies, N.H., Rogers, L.L., Martin, J.M., & McLaughlin, J.L. (1998). Cytotoxic and insecticidal constituents of the unripe fruit of Persea americana. Journal of Natural Products, 61, 781-785. https://doi.org/10.1021/np9800304
  • Ogbole, O.O., Ndabai, N.C., Akinleye, T.E., & Attah, A.F. (2020). Evaluation of peptide-rich root extracts of Calliandria portoriscensis (Jacq.) Benth (Mimosaceae) for in vitro antimicrobial activity and brine shrimp lethality. BMC Complementary Medicine and Therapies, 20, 30. https://doi.org/10.1186/s12906-020-2836-6
  • Osamudiamen, P.M., Aiyelaagbe, O.O., Vaid, S., Sangwan, P.L., Ogbesejana, A.B., & Saxen, A.K. (2020). Comparative in-vitro anticancer and brine shrimp cytotoxic activities of Mezoneuron benthamianum Baill. Journal of Medicinal Plants for Economic Development, 4(1), a73. https://doi.org/10.4102/jomped.v4i1.73
  • Padmaja, R., Arun, P.C., Prashanth, D., Deepak, M., Amit, A., & Anjana, M. (2002). Brine shrimp lethality bioassay of selected Indian medicinal plants. Fitoterapia, 73, 508–510.
  • Paeonia kesrouanensis J.Thiébaut in GBIF Secretariat. (2019c). GBIF Backbone Taxonomy. Checklist dataset https://www.gbif.org/species/3614374 doi: https://doi.org/10.15468/39omei accessed via GBIF.org on 2020-05-07.
  • Parra, L.A., Yhebra, R.S., Sardiñas, I.G., & Buela, L.I. (2001). Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine, 8, 395-400. https://doi.org/10.1078/0944-7113-00044
  • Perez, H., Diaz, F., & Medina, J.D. (1997). Chemical investigation and in vitro antimalarial activity of Tabebuia ochracea ssp. neochrysantha. International Journal of Pharmacognosy, 35, 227-231. https://doi.org/10.1076/phbi.35.4.227.13306
  • Pisutthanan, S., Plianbangchang, P., Pisutthanan, N., Ruanruay, S., & Muanrit, O. (2013). Brine shrimp lethality activity of Thai medicinal plants in the family Meliaceae. Naresuan University Journal: Science and Technology, 12(2), 13-18
  • Rosyadi, A., Faizah, R.N., Nuri, N., & Puspitasari, E. (2020). Anticancer properties of methanolic extract of Piper crocatum leaf using BST and cytotoxicity on HeLa cell lines. Annals of Tropical Medicine and Public Health, 23(3A), 03-11. https://doi.org/10.36295/ASRO.2020.2331
  • Santos Pimenta, L.P., Pinto, G.B., Takahashi, J.A., Silva, L.G.F., & Boaventura, M.A.D. (2003). Biological screening of Annonaceous Brazilian Medicinal Plants using Artemia salina (Brine Shrimp Test). Phytomedicine, 10, 209-212. https://doi.org/10.1078/094471103321659960
  • Sellami, I., Charmantier, G., Naceur, H., Kacem, A., & Lorin-Nebel, C. (2020). Osmoregulatory performance and immunolocalization of Na+/K+-ATPase in the branchiopod Artemia salina from the Sebkha of Sidi El Hani (Tunisia). Tissue and Cell, 63, 101340. https://doi.org/10.1016/j.tice.2020.101340
  • Siqueira, M.J., Bomm, D.M., Pereira, N.F.G., Gareez, W.S., & Boaventura, M.A.D. (1998). Estudo fitoquimico de Unonopsis lindmanii- Annonaceae, biomonitorado peloensaio de toxicidade sobre Artemia salina Leach. Quimica Nova, 21, 557-559. https://doi.org/10.1590/S0100-40421998000500004
  • Tülay, A.Ç., & Özlem, S.A. (2007). Cytotoxic and genotoxic effects of Lavandula stoechas aqueous extracts. Biologia, 3, 292–296. https://doi.org/10.2478/s11756-007-0051-2
  • Turan, M., & Mammadov, R. (2018). Antioxidant, Antimicrobial, Cytotoxic, Larvicidal and Anthelmintic Activities and Phenolic Contents of Cyclamen alpinum. Pharmacology & Pharmacy, 9, 100-116. https://doi.org/10.4236/pp.2018.94008
  • Turan, M. & Mammadov, R. (2020). Antioxidant, Cytotoxic, Larvicidal, and Anthelmintic Activity and Phytochemical Screening by HPLC of Calicotome villosa from Turkey. Pharmaceutical Chemistry Journal, 54(5), 478-483. https://doi.org/10.1007/s11094-020-02225-8
  • Umaru, I.J., Ahmed, F.B., Umaru, K.I., & Omolayo, A.O. (2020). Extraction and Biological Activity of Barringtonia asiatica Stem-Bark Extracts on some Selected Fungi, Bacteria's, Cytotoxicity and Antioxidant Potentials. Indian Journal of Pure & Applied Biosciences, 8(1), 6-15. http://dx.doi.org/10.18782/2582-2845.7966
  • Veni, T., & Pushpanathan, T. (2014). Comparison of the Artemia salina and Artemia fransiscana bioassays for toxicity of Indian medicinal plants. Journal of Coastal Life Medicine, 2, 453-457. https://doi.org/10.12980/JCLM.2.201414J29
  • Yun, S., Yoon, S.Y., Hong, E.J., Giri, S.S., Kim, S.G., Kim, S.W., Han, S.J., Kwon, J., Oh, W.T., Lee, S.B., & Park, S.C. (2020). Effect of plasma-activated water, used as a disinfectant, on the hatch rate of dormant cysts of the Artemia salina. Aquaculture, 523, 735232. https://doi.org/10.1016/j.aquaculture.2020.735232

Bazı Geofit Türlerin Biyoaktif Bileşiklerinin Tuzlu Su Karidesi (Artemia salina)'ne Karşı Toksisite Aktivitesinin Değerlendirilmesi

Yıl 2021, Cilt: 17 Sayı: 2, 195 - 201, 01.06.2021
https://doi.org/10.22392/actaquatr.791297

Öz

Artemia salina L. çok hassas, kolay ulaşılabilir, laboratuvar ortamında in vivo çalışmaya olanak sağlayan, toksik etki çalışmalarında kullanılıp güvenli sonuçlar veren, dünya ekosistemi için önemli bir model organizmadır. Bu çalışma, geofit olan beş cinse ait bazı türlerin (Arum rupicola var. virescens (Stapf) P.C. Boyce, Cyclamen cilicium Boiss. & Heldr, Gagea bohemica (Zauschn.) Schult. & Schult. f., Narcissus tazetta subsp. tazetta L., Paeonia kesrouanensis J. Thiébaut) toprak üstü ve toprak altı kısımlarının su ekstraktının A. salina’ya karşı toksik etkisini değerlendirmek için tasarlanmıştır. Bütün taksonlarda toprak üstü kısım, toprak altı kısıma göre daha toksik olduğu bulunmuştur. P. kesrouanensis’in toprak üstü kısmı 44.44 ± 2.78% (1.56 ± 0.13 mg/mL, LC50) değeri ile en yüksek toksik etkiyi gösterirken N. tazetta subsp. tazetta’nın toprak altı kısmı 8.33 ± 0.00% (294.68 ± 1.54 mg/mL, LC50) değeri ile en düşük toksik etkiyi göstermiştir. N. tazetta subsp. tazetta ve G. bohemica’nın toprak altı kısmı > 1000 mg/ml, LC90 ile toksik bulunmamıştır. A. salina toksik etki çalışmalarının insektisit ve antikanser çalışmaları ile ilgili olduğunu gösteren çalışmalara dayanarak, özellikle P. kesrouanensis'in yer üstü kısmının potansiyel insektisit ve antikanser özelliklere sahip olduğu ancak daha fazla çalışmaya ihtiyaç duyulduğu görülmüştür.

Proje Numarası

Project No: 2019FEBE001

Kaynakça

  • Almeida, L.M., Prado, A.D.L., Xavier-Silva, K.R., Firmino, M.T., Paula, M.I.M., Gomes, P.N., Paula, J.A.M., & Bailão, E.F.L.C. (2020). Cytotoxic effect of Vernonanthura polyanthes leaves aqueous extracts, Brazilian Journal of Biology, In Press. http://dx.doi.org/10.1590/1519-6984.225281
  • AnalystSoft Inc. Released. (2015). Statplus Professional for Windows, Version 5.9.8.5, Walnut, CA: AnalystSoft Inc.
  • Ara, J., Sultana, V., Ehteshamul-Haque, S., Qasim, R., & Uddin, V. (1999). Cytotoxic Activity of Marine Macro-algae on Artemia salina (Brine Shrimp). Phytotherapy Research, 13, 304-307.
  • Artemia salina (Linnaeus, 1758) in GBIF Secretariat. (2019a). GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2020-09-06.
  • Arum rupicola var. virescens (Stapf) P.C. Boyce in Plant List. (2012a). The Plant List, Published on the Internet; http://www.theplantlist.org/tpl1.1/record/kew-16375 (accessed 2020-05-07).
  • Asem, A., Nasrullah, R.P., & Patricio, D.L.R.E. (2010). The genus Artemia Leach, 1819 (Crustacea: Branchiopoda). I. True and false taxonomical descriptions. Latin American Journal of Aquatic Research, 38(3), 501-506. https://doi.org/10.3856/vol38-issue3-fulltext-14
  • Başbuğ, Y. (1999). Reproduction Characteristics of Artemia salina (L., 1758) in Tuz Lake. Turkish Journal of Zoology, 23(2), 635-640.
  • Carballo, J. L., Hernández-Inda, Z.L., Pérez, P., & García-Grávalos, M.D. (2002). A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnology, 2, 17. https://doi.org/10.1186/1472-6750-2-17
  • Carvalho F.D., & Moreira L.A. (2017). Why is Aedes aegypti Linnaeus so Successful as a Species? Neotropical Entomology, 46, 243–255. https://doi.org/10.1007/s13744-017-0520-4
  • Cyclamen cilicium Boiss. & Heldr. in Plant List. (2012b). The Plant List, Published on the Internet; http://www.theplantlist.org/tpl1.1/record/kew-2749712 (accessed 2020-05-07).
  • Demarchi, C.A., Silva, L.M., Niedźwiecka, A., Ślawska-Waniewska, A., Lewińska, S., Magro, J. D., Calisto, J.F.F., Martello, R., & Rodrigues, C.A. (2020). Nanoecotoxicology study of the response of magnetic O-Carboxymethylchitosan loaded silver nanoparticles on Artemia salina. Environmental Toxicology and Pharmacology, 74, 103298, https://doi.org/10.1016/j.etap.2019.103298
  • Gagea bohemica (Zauschn.) Schult. & Schult.f. in Plant List. (2012c). The Plant List, Published on the Internet; http://www.theplantlist.org/tpl1.1/record/kew-307157 (accessed 2020-05-07).
  • Hamrun, N., Nabilah, T., Hasyim, R., Ruslin, M., Damma, I., & Arianto, M.A.A. (2020). Toxicity Test of Bioactive Red Alga Extract Eucheuma spinosum on Shrimp Artemia salina Leach. Systematic Reviews in Pharmacy, 11(5), 672-676.
  • IBM Corp. Released. (2017). IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp. Itam, A., & Anna, L. (2020). Antioxidant activities, cytotoxic properties and total phenolic content of Syzygium malaccense (L.) Merr. & L.M. Perry leaves extracts: A West Sumatera Indonesian plant. Pakistan Journal of Pharmaceutical Sciences, 33(1), 175-181. https://doi.org/10.36721/PJPS.2020.33.1.REG.175-181.1 J ohari, S.A., Rasmussen, K., Gulumian, M., Ghazi-Khansari, M., Tetarazako, N., Kashiwada, S., Asghari, S., Park, J.W., & Yu, I.J. (2019). Introducing a new standardized nanomaterial environmental toxicity screening testing procedure, ISO/TS 20787: aquatic toxicity assessment of manufactured nanomaterials in saltwater Lakes using Artemia sp. nauplii. Toxicology Mechanisms and Methods, 29(2), 95–109. https://doi.org/10.1080/15376516.2018.1512695
  • Krishnaraju, A.V., Rao, T.V.N., Sundararaju, D., Vanisree, M., Tsay, H.S., & Subbaraju, G.V. (2005). Assessment of Bioactivity of Indian Medicinal Plants Using Brine Shrimp (Artemia salina) Lethality Assay. International Journal of Applied Science and Engineering, 3, 125-134.
  • Labbe, C., Castillo, M., & Connoly, J.D. (1993). Mono and sesquiterpenoids from Satureja gilliesii. Phytochemistry, 34, 441-444. https://doi.org/10.1016/0031-9422(93)80026-O
  • Luna, J.S., Santos, A.F., Lima, M.R.F., Omena, M.C., Mendonça, F.A.C., Bieber, L. W., & Sant’Ana, A. E. G. (2005). A study of the larvicidal and molluscicidal activities of some medicinal plants from northeast Brazil. Journal of Ethnopharmacology, 97(2), 199–206. https://doi.org/10.1016/j.jep.2004.10.004.
  • Maia-Neto, L.S., Amaral, A., Lucena, L.R.F., Magnata, S.S.L.P., Silva, E.B., Netto, A.M., Oliveira, A.F.M., & Souza, I.A. (2020). Gamma irradiation for enhancing active chemical compounds in leaf extracts of Libidibia ferrea (Leguminosae). Applied Radiation and Isotopes, 109306 (In Press). https://doi.org/10.1016/j.apradiso.2020.109306
  • Mayorga, P., Pérez, K.R., Cruz, S.M., & Cáceres, A. (2010). Comparison of bioassays using the anostracan crustaceans Artemia salina and Thamnocephalus platyurus for plant extract toxicity screening. Revista Brasileira de Farmacognosia, 20, 897-903. http://dx.doi.org/10.1590/S0102-695X2010005000029
  • McLaughlin J.L., Rogers L.L., & Anderson, J.E. (1998). The Use of Biological Assays to Evaluate Botanicals. Drug Information Journal, 32, 513-524. https://doi.org/10.1177/009286159803200223
  • McLaughlin, J.L., Chang, C.J., & Smith, D.L. (1991). Bench-Top Bioassays for the Discovery of Bioactive Natural Products: An Update. In: Rhaman, A.U., Ed. Studies in Natural Products Chemistry, Elsevier, Amsterdam, 383-409.
  • Montanher, A.B.P., Pizolatti, M., & Brighente, I.M.C. (2002). An application of the brine shrimp bioassay for general screening of Brazilian medicinal plants. Acta Farmaceutica Bonaerense, 21, 175-178.
  • Mughni, N.F.A., & Yusop, F.F.M. (2020). Brine Shrimp Lethality Assay of Methanolic Extract of Orthosiphon stamineus Benth. Leaves. SA Conference Proceeding: Industrial Revolution 4.0., 1(1), 23-28
  • Narcissus tazetta subsp. tazetta in GBIF Secretariat. (2019b). GBIF Backbone Taxonomy. Checklist dataset https://www.gbif.org/species/7227583 https://doi.org/10.15468/39omei accessed via GBIF.org on 2020-05-07.
  • Oberlies, N.H., Rogers, L.L., Martin, J.M., & McLaughlin, J.L. (1998). Cytotoxic and insecticidal constituents of the unripe fruit of Persea americana. Journal of Natural Products, 61, 781-785. https://doi.org/10.1021/np9800304
  • Ogbole, O.O., Ndabai, N.C., Akinleye, T.E., & Attah, A.F. (2020). Evaluation of peptide-rich root extracts of Calliandria portoriscensis (Jacq.) Benth (Mimosaceae) for in vitro antimicrobial activity and brine shrimp lethality. BMC Complementary Medicine and Therapies, 20, 30. https://doi.org/10.1186/s12906-020-2836-6
  • Osamudiamen, P.M., Aiyelaagbe, O.O., Vaid, S., Sangwan, P.L., Ogbesejana, A.B., & Saxen, A.K. (2020). Comparative in-vitro anticancer and brine shrimp cytotoxic activities of Mezoneuron benthamianum Baill. Journal of Medicinal Plants for Economic Development, 4(1), a73. https://doi.org/10.4102/jomped.v4i1.73
  • Padmaja, R., Arun, P.C., Prashanth, D., Deepak, M., Amit, A., & Anjana, M. (2002). Brine shrimp lethality bioassay of selected Indian medicinal plants. Fitoterapia, 73, 508–510.
  • Paeonia kesrouanensis J.Thiébaut in GBIF Secretariat. (2019c). GBIF Backbone Taxonomy. Checklist dataset https://www.gbif.org/species/3614374 doi: https://doi.org/10.15468/39omei accessed via GBIF.org on 2020-05-07.
  • Parra, L.A., Yhebra, R.S., Sardiñas, I.G., & Buela, L.I. (2001). Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine, 8, 395-400. https://doi.org/10.1078/0944-7113-00044
  • Perez, H., Diaz, F., & Medina, J.D. (1997). Chemical investigation and in vitro antimalarial activity of Tabebuia ochracea ssp. neochrysantha. International Journal of Pharmacognosy, 35, 227-231. https://doi.org/10.1076/phbi.35.4.227.13306
  • Pisutthanan, S., Plianbangchang, P., Pisutthanan, N., Ruanruay, S., & Muanrit, O. (2013). Brine shrimp lethality activity of Thai medicinal plants in the family Meliaceae. Naresuan University Journal: Science and Technology, 12(2), 13-18
  • Rosyadi, A., Faizah, R.N., Nuri, N., & Puspitasari, E. (2020). Anticancer properties of methanolic extract of Piper crocatum leaf using BST and cytotoxicity on HeLa cell lines. Annals of Tropical Medicine and Public Health, 23(3A), 03-11. https://doi.org/10.36295/ASRO.2020.2331
  • Santos Pimenta, L.P., Pinto, G.B., Takahashi, J.A., Silva, L.G.F., & Boaventura, M.A.D. (2003). Biological screening of Annonaceous Brazilian Medicinal Plants using Artemia salina (Brine Shrimp Test). Phytomedicine, 10, 209-212. https://doi.org/10.1078/094471103321659960
  • Sellami, I., Charmantier, G., Naceur, H., Kacem, A., & Lorin-Nebel, C. (2020). Osmoregulatory performance and immunolocalization of Na+/K+-ATPase in the branchiopod Artemia salina from the Sebkha of Sidi El Hani (Tunisia). Tissue and Cell, 63, 101340. https://doi.org/10.1016/j.tice.2020.101340
  • Siqueira, M.J., Bomm, D.M., Pereira, N.F.G., Gareez, W.S., & Boaventura, M.A.D. (1998). Estudo fitoquimico de Unonopsis lindmanii- Annonaceae, biomonitorado peloensaio de toxicidade sobre Artemia salina Leach. Quimica Nova, 21, 557-559. https://doi.org/10.1590/S0100-40421998000500004
  • Tülay, A.Ç., & Özlem, S.A. (2007). Cytotoxic and genotoxic effects of Lavandula stoechas aqueous extracts. Biologia, 3, 292–296. https://doi.org/10.2478/s11756-007-0051-2
  • Turan, M., & Mammadov, R. (2018). Antioxidant, Antimicrobial, Cytotoxic, Larvicidal and Anthelmintic Activities and Phenolic Contents of Cyclamen alpinum. Pharmacology & Pharmacy, 9, 100-116. https://doi.org/10.4236/pp.2018.94008
  • Turan, M. & Mammadov, R. (2020). Antioxidant, Cytotoxic, Larvicidal, and Anthelmintic Activity and Phytochemical Screening by HPLC of Calicotome villosa from Turkey. Pharmaceutical Chemistry Journal, 54(5), 478-483. https://doi.org/10.1007/s11094-020-02225-8
  • Umaru, I.J., Ahmed, F.B., Umaru, K.I., & Omolayo, A.O. (2020). Extraction and Biological Activity of Barringtonia asiatica Stem-Bark Extracts on some Selected Fungi, Bacteria's, Cytotoxicity and Antioxidant Potentials. Indian Journal of Pure & Applied Biosciences, 8(1), 6-15. http://dx.doi.org/10.18782/2582-2845.7966
  • Veni, T., & Pushpanathan, T. (2014). Comparison of the Artemia salina and Artemia fransiscana bioassays for toxicity of Indian medicinal plants. Journal of Coastal Life Medicine, 2, 453-457. https://doi.org/10.12980/JCLM.2.201414J29
  • Yun, S., Yoon, S.Y., Hong, E.J., Giri, S.S., Kim, S.G., Kim, S.W., Han, S.J., Kwon, J., Oh, W.T., Lee, S.B., & Park, S.C. (2020). Effect of plasma-activated water, used as a disinfectant, on the hatch rate of dormant cysts of the Artemia salina. Aquaculture, 523, 735232. https://doi.org/10.1016/j.aquaculture.2020.735232
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yapısal Biyoloji , Çevre Bilimleri, Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Murat Turan 0000-0003-2900-1755

Ramazan Mammadov 0000-0003-2218-5336

Proje Numarası Project No: 2019FEBE001
Yayımlanma Tarihi 1 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 17 Sayı: 2

Kaynak Göster

APA Turan, M., & Mammadov, R. (2021). Evaluation of the Toxicity Activity of Bioactive Compounds of Some Geophytes against Brine Shrimp (Artemia salina L.). Acta Aquatica Turcica, 17(2), 195-201. https://doi.org/10.22392/actaquatr.791297