Araştırma Makalesi
BibTex RIS Kaynak Göster

Seasonal Variations in Fatty Acid and Nutritional Composition of Sand Smelt (Atherina boyeri) caught from Cekerek Dam (Yozgat, Turkey)

Yıl 2021, Cilt: 17 Sayı: 3, 409 - 420, 01.09.2021
https://doi.org/10.22392/actaquatr.868642

Öz

Seasonal variations of proximate and fatty acid compositions of the muscle tissue of sand smelt (Atherina boyeri) harvested in Cekerek (Sureyyabey) Dam were investigated. Seasonal nutritional composition of sand smelt muscle in October, March and July were found as 17.00%; 16.72%; 15.64% for protein, 1.95%; 2.00%; 2.86% for lipid, 79.25%; 79.17%; 78.06% for moisture and 1.80%; 2.10%; 2.49% ash, respectively. Sand smelt showed the lowest protein values in summer, while the highest protein values were observed in autumn and spring. The highest lipid content of sand smelt was found in summer (P < 0.05). The moisture content of sand smelt in summer was significantly (p<0.05) lower than those of the content in autumn and spring. The lowest ash content was observed in autumn (1.80%) whereas sand smelt gave the highest ash level was in summer. During the seasons, the proximate and FA composition values of sand smelt showed variations (p<0.05). Seasonal fatty acid compositions of sand smelt ranged from 24.63 to 25.69% for saturated fatty acid (SFA), from 20.75 to 26.43% for monounsaturated (MUFA), and from 28.29% to 36.11% polyunsaturated fatty acid (PUFA). Palmitic acid (16:0), stearic acid (18:0), palmitoleic acid (16:1ω7), oleic acid (18:1ω9), linoleic acid (LA, 18:2ω6), arachidonic acid (ARA, 20:4ω6), linolenic acid (18:3ω3), eicosapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic acid (DHA, 22:6ω3) were major fatty acids of sand smelt in different seasons. The highest proportion of EPA (5.59-7.22%) and DHA (12.33-19.77%) were observed in spring. The results showed that sand smelt is good source of n-3 PUFAs and is rich in EPA+DHA for human nutrition. 

Destekleyen Kurum

Project Coordination Application and Research Center of Yozgat Bozok University

Proje Numarası

Project Number: 6602a-Turizm/18-225

Teşekkür

The author would like to thank Department of Project Coordination Application and Research Center of Yozgat Bozok University for their support (Project Number: 6602a-Turizm/18-225). The author wish to thank Professor Yesim Özogul for her valuable contributions and supports and to Dr. Mustafa Durmus for his helps during the research.

Kaynakça

  • Abedi, E., & Sahari, M. A. (2014). Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. In Food Science and Nutrition (Vol. 2, Issue 5, pp. 443–463). https://doi.org/10.1002/fsn3.121
  • Abou-Zied, A. S., Talab, A. S., Ibrahim, M. A., & Ibrahim, S. M. (2020). Quality attributes of artificial dried and dried salted sand smelt fish (Atherina boyeri). Egyptian Journal of Aquatic Biology and Fisheries, 24(7 Special issue), 307–317. https://doi.org/10.21608/EJABF.2020.120338
  • Ackman, R. G. (1989). Nutritional composition of fats in seafoods. In Progress in Food and Nutrition Science (Vol. 13, Issues 3–4, pp. 161–289).
  • Ahlgren, G., Gustafsson, I. ‐B, & Boberg, M. (1992). Fatty Acid Content and Chemical Composition of Freshwater Microalgae. Journal of Phycology, 28(1), 37–50. https://doi.org/10.1111/j.0022-3646.1992.00037.x
  • Ahlgren, G., Lundstedt, L., Brett, M., & Forsberg, C. (1990). Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. Journal of Plankton Research, 12(4), 809–818. https://doi.org/10.1093/plankt/12.4.809
  • Alasalvar, C., Taylor, K. D. A., Zubcov, E., Shahidi, F., & Alexis, M. (2002). Differentiation of cultured and wild sea bass (Dicentrarchus labrax): Total lipid content, fatty acid and trace mineral composition. Food Chemistry, 79(2), 145–150. https://doi.org/10.1016/S0308-8146(02)00122-X
  • Ali, M., Imran, M., Nadeem, M., Khan, M. K., Sohaib, M., Suleria, H. A. R., & Bashir, R. (2019). Oxidative stability and Sensoric acceptability of functional fish meat product supplemented with plant - based polyphenolic optimal extracts. Lipids in Health and Disease, 18(1). https://doi.org/10.1186/s12944-019-0982-y
  • AOAC. (1984). Official Methods of Analysis of AOAC International 14th. Ed. In Association of Official Analysis Chemists International. Washington, DC, USA.
  • AOAC. (1998). Official methods of analysis of the Association of Official Analytical Chemists International. In Official methods of analysis 16th. Ed. Association of Official Analytical Chemists. International, Inc., Gaithersburg, Maryland, USA., CD-ROM.
  • Bandarra, N. M., Batista, I., Nunes, M. L., & Empis, J. M. (2001). Seasonal variation in the chemical composition of horse-mackerel (Trachurus trachurus). European Food Research and Technology, 212(5), 535–539. https://doi.org/10.1007/s002170100299
  • Bartulović, V., Glamuzina, B., Conides, A., Dulčić, J., Lučić, D., Njire, J., & Kožul, V. (2004). Age, growth, mortality and sex ratio of sand smelt, Atherina boyeri Risso, 1810 (Pisces: Atherinidae) in the estuary of the Mala Neretva River (middle eastern Adriatic, Croatia). Journal of Applied Ichthyology, 20(5), 427–430. https://doi.org/10.1111/j.1439-0426.2004.00560.x
  • Benzer, S. (2018). First Record of the Sand Smelt Atherina boyeri Risso, 1810 in the Süreyyabey Dam Lake, Yeşilırmak Basin, Turkey. Annals of Biological Sciences, 6(2), 38–42.
  • Bilgin, Ş., Çetinkaya, S., & Bolat, Y. (2011). Changes on the nutritional compositions of the sand smelt (Atherina Boyeri Risso, 1810) marinade during storage. African Journal of Biotechnology, 10(16), 3197–3203. https://doi.org/10.5897/ajb10.2067
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099
  • Bouriga, N., Mili, S., Ennouri, R., Quignard, J. P., Trabelsi, M., & Faure, E. (2014). Reproductive parameters and seasonal variation in fatty acid composition of Atherina boyeri s. str. and A. lagunae populations from open sea, lagoonand island coasts of Tunisia. Cahiers de Biologie Marine, 55(2), 201–212. https://doi.org/10.21411/cbm.a.cc1ba07d
  • Branciari, R., Franceschini, R., Roila, R., Valiani, A., Pecorelli, I., Piersanti, A., Haouet, N., Framboas, M., & Ranucci, D. (2020). Nutritional value and contaminant risk assessment of some commercially important fishes and crawfish of lake Trasimeno, Italy. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/ijerph17072545
  • Bulut, H. (2018). Kapıaçmaz Göleti (Kovancılar, Elazığ) Zooplankton’unun Mevsimsel Değişimi. Turkish Journal of Agriculture - Food Science and Technology, 6(11), 1617. https://doi.org/10.24925/turjaf.v6i11.1617-1621.2106
  • Bulut, H., & Saler, S. (2014). Murat Nehri’nin (Elazığ-Palu İlçe Merkezi Sınırları İçindeki Bölümün’de) Zooplanktonu ve Değişimi. Turkish Journal of Agriculture - Food Science and Technology, 2(1), 13. https://doi.org/10.24925/turjaf.v2i1.13-17.32
  • Caramujo, M. J., Boschker, H. T. S., & Admiraal, W. (2008). Fatty acid profiles of algae mark the development and composition of harpacticoid copepods. Freshwater Biology, 53(1), 77–90. https://doi.org/10.1111/j.1365-2427.2007.01868.x
  • Cejas, J. R., Almansa, E., Jérez, S., Bolaños, A., Samper, M., & Lorenzo, A. (2004). Lipid and fatty acid composition of muscle and liver from wild and captive mature female broodstocks of white seabream, Diplodus sargus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 138(1), 91–102. https://doi.org/10.1016/j.cbpc.2004.03.003
  • Chrisafi, E., Kaspiris, P., & Katselis, G. (2007). Feeding habits of sand smelt (Atherina boyeri, Risso 1810) in Trichonis Lake (Western Greece). Journal of Applied Ichthyology, 23(3), 209–214. https://doi.org/10.1111/j.1439-0426.2006.00824.x
  • Connor, W. E. (2000). Importance of n-3 fatty acids in health and disease. American Journal of Clinical Nutrition, 71(1 SUPPL.), 171–175. https://doi.org/10.1093/ajcn/71.1.171s
  • Çevik, C., Gündoğdu, S., & Alagöz Ergüden, S. (2018). New Record of the Big-Scale Sand Smelt Atherina boyeri Risso, 1810 (Atherinidae) in the Seyhan Dam Reservoir (Seyhan River Basin, Turkey). Natural and Engineering Sciences, 133–140. https://doi.org/10.28978/nesciences.424658
  • Dal Bosco, A., Mattioli, S., Mancini, S., Cartoni Mancinelli, A., Cotozzolo, E., & Castellini, C. (2019). Nutritional composition of raw and fried big-scale sand smelt (Atherina boyeri) from trasimeno lake. Italian Journal of Animal Science, 18(1), 608–614. https://doi.org/10.1080/1828051X.2018.1548915
  • Desvilettes, C., Bourdier, G., Amblard, C., & Barth, B. (1997). Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshwater Biology, 38(3), 629–637. https://doi.org/10.1046/j.1365-2427.1997.00241.x
  • Dridi, S., Romdhane, M. S., & Cafsi, M. El. (2017). Nutritional quality in terms of lipid content and fatty acid composition of neutral and polar lipids in the adductor muscle of the oyster Crassostrea gigas (Thunberg, 1794) farmed in the Bizert lagoon (Tunisia) in relation with sexual cycle and environmen. Egyptian Journal of Aquatic Research, 43(4), 329–336. https://doi.org/10.1016/j.ejar.2017.10.001
  • Effiong, B.N. and Mohammed, I. (2008). Effect of seasonal variation on the Nutrient composition in selected fish species in Lake Kainji - Nigeria. Nature and Science, 6(2), 2–6.
  • Ekmekçi, F. G., Kırankaya, Ş. G., Gençoǧlu, L., & Yoğurtçuoğlu, B. (2013). Present status of invasive fishes in inland waters of Turkey and assessment of the effects of invasion. Istanbul University Journal of Fisheries & Aquatic Sciences, 28(July), 105–140.
  • Fallah, A. A., Nematollahi, A., & Saei-Dehkordi, S. S. (2013). Proximate composition and fatty acid profile of edible tissues of Capoeta damascina (Valenciennes, 1842) reared in freshwater and brackish water. Journal of Food Composition and Analysis, 32(2), 150–154. https://doi.org/10.1016/j.jfca.2013.09.004
  • Ghioni, C., Bell, J. G., & Sargent, J. R. (1996). Polyunsaturated fatty acids in neutral lipids and phospholipids of some freshwater insects. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 114(2), 161–170. https://doi.org/10.1016/0305-0491(96)00019-3
  • Gogus, U., & Smith, C. (2010). N-3 omega fatty acids: a review of current knowledge. In International Journal of Food Science and Technology. https://doi.org/10.1111/j.1365-2621.2009.02151.x
  • Görgün, S., Akpinar, N., & Dirican, S. (2014). A comparative study on the fatty acid profiles of total lipid, neutral and polar lipids in the liver and muscle of capoeta sieboldii (steindachner, 1864) and capoeta baliki (Turan, kottelat, ekmekçi, Imamoǧlu, 2006) from Tödürge lake (Sivas, Turkey). Acta Alimentaria, 43(1), 170–181. https://doi.org/10.1556/AAlim.43.2014.1.17
  • Guler, G. O., Kiztanir, B., Aktumsek, A., Citil, O. B., & Ozparlak, H. (2008). Determination of the seasonal changes on total fatty acid composition and ω3/ω6 ratios of carp (Cyprinus carpio L.) muscle lipids in Beysehir Lake (Turkey). Food Chemistry, 108(2), 689–694. https://doi.org/10.1016/j.foodchem.2007.10.080
  • Ichihara, K. N. ich., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31(5), 535–539. https://doi.org/10.1007/BF02522648 Inhamuns, A. J., & Franco, M. R. B. (2008). EPA and DHA quantification in two species of freshwater fish from Central Amazonia. Food Chemistry, 107(2), 587–591. https://doi.org/10.1016/j.foodchem.2007.07.032
  • Izci, L., Bilgin, Ş., & Günlü, A. (2011a). Production of fish finger from sand smelt (Atherina boyeri, RISSO 1810) and determination of quality changes. African Journal of Biotechnology, 10(21), 4464–4469. https://doi.org/10.5897/AJB10.2093
  • Izci, L., Günlü, A., & Bilgin, Ş. (2011b). Production of fish chips from sand smelt (Atherina boyeri, RISSO 1810) and determination of some quality changes. Iranian Journal of Fisheries Sciences, 10(2), 230–241.
  • James Henderson, R., & Tocher, D. R. (1987). The lipid composition and biochemistry of freshwater fish. In Progress in Lipid Research (Vol. 26, Issue 4, pp. 281–347). https://doi.org/10.1016/0163-7827(87)90002-6
  • Keva, O., Tang, P., Käkelä, R., Hayden, B., Taipale, S. J., Harrod, C., & Kahilainen, K. K. (2019). Seasonal changes in European whitefish muscle and invertebrate prey fatty acid composition in a subarctic lake. Freshwater Biology, 64(11), 1908–1920. https://doi.org/10.1111/fwb.13381
  • Kinsella, J. (1987). Seafoods and fish oils in human health and disease. New York: Marcel Dekker. Köse, S., Koral, S., Özoĝul, Y., & Tufan, B. (2010). Fatty acid profile and proximate composition of Pacific mullet (Mugil so-iuy) caught in the Black Sea. International Journal of Food Science and Technology, 45(8), 1594–1602. https://doi.org/10.1111/j.1365-2621.2010.02309.x
  • Kris-Etherton, P. M., Harris, W. S., & Appel, L. J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. In Circulation (Vol. 106, Issue 21, pp. 2747–2757). https://doi.org/10.1161/01.CIR.0000038493.65177.94
  • Lauriano, E. R., Faggio, C., Capillo, G., Spanò, N., Kuciel, M., Aragona, M., & Pergolizzi, S. (2018). Immunohistochemical characterization of epidermal dendritic-like cells in giant mudskipper, Periophthalmodon schlosseri. Fish and Shellfish Immunology, 74, 380–385. https://doi.org/10.1016/j.fsi.2018.01.014
  • Leaf, A., & Weber, P. C. (1988). No Title. New England Journal of Medicine, 318, 549–555.
  • Leaf, Alexander, Kang, J. X., Xiao, Y. F., & Billman, G. E. (2003). Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. In Circulation (Vol. 107, Issue 21, pp. 2646–2652). https://doi.org/10.1161/01.cir.0000069566.78305.33
  • Linhartová, Z., Krejsa, J., Zajíc, T., Másílko, J., Sampels, S., & Mráz, J. (2018). Proximate and fatty acid composition of 13 important freshwater fish species in central Europe. Aquaculture International, 26(2), 695–711. https://doi.org/10.1007/s10499-018-0243-5
  • Luczynska, J., Paszczyk, B., & Luczynski, M. J. (2014). Fatty acid profiles in marine and freshwater fish from fish markets in northeastern Poland. Archives of Polish Fisheries, 22(3), 181–188. https://doi.org/10.2478/aopf-2014-0018
  • Lunn, J., & Theobald, H. E. (2006). The health effects of dietary unsaturated fatty acids. Nutrition Bulletin, 31(3), 178–224. https://doi.org/10.1111/j.1467-3010.2006.00571.x
  • Mahadevan, G., Pouladi, M., Stara, A., & Faggio, C. (2019). Nutritional evaluation of elongate mudskipper Pseudapocryptes elongatus (Cuvier, 1816) from Diamond Harbor, West Bengal, India. Natural Product Research. https://doi.org/10.1080/14786419.2019.1666388
  • Makhutova, O. N., Shulepina, S. P., Sharapova, T. A., Dubovskaya, O. P., Sushchik, N. N., Baturina, M. A., Pryanichnikova, E. G., Kalachova, G. S., & Gladyshev, M. I. (2016). Content of polyunsaturated fatty acids essential for fish nutrition in zoobenthos species. Freshwater Science, 35(4), 1222–1234. https://doi.org/10.1086/688760
  • Massresha, E., Mateos, H., Lewandowski, P., & Zewdue, A. (2017). Proximate Composition and Fatty Acid Content of Commercially Important Fish Species from Ethiopian Lakes: A Review. World Journal of Food Science and Technology, 1(3), 105–114. https://doi.org/10.11648/j.wjfst.20170103.14
  • Norrbin, M. F., Olsen, R. E., & Tande, K. S. (1990). Seasonal variation in lipid class and fatty acid composition of two small copepods in Balsfjorden, northern Norway. Marine Biology, 105(2), 205–211. https://doi.org/10.1007/BF01344288
  • Öksüz, A., Dikmen, M., Alkan, Ş. B., Yaylalı, O., & Demirtaş, S. (2019). Beyşehir Gölünden Avlanan Sazan ve Sudak Balıklarının Besin ve Yağ Asidi Bileşenlerinin Karşılaştırılması. Aquatic Research, 9(1), 13–17.
  • Özogul, Y., Özogul, F., & Alagoz, S. (2007). Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: A comparative study. Food Chemistry, 103(1), 217–223. https://doi.org/10.1016/j.foodchem.2006.08.009
  • Özogul, Y., Özogul, F., Çiçek, E., Polat, A., & Kuley, E. (2009). Fat content and fatty acid compositions of 34 marine water fish species from the Mediterranean Sea. International Journal of Food Sciences and Nutrition, 60(6), 464–475. https://doi.org/10.1080/09637480701838175
  • Ozogul, Y., Polat, A., Uçak, I., & Ozogul, F. (2011). Seasonal fat and fatty acids variations of seven marine fish species from the Mediterranean Sea. European Journal of Lipid Science and Technology, 113(12), 1491–1498. https://doi.org/10.1002/ejlt.201000554
  • Ozogul, Y., Ucar, Y., Takadaş, F., Durmus, M., Köşker, A. R., & Polat, A. (2018). Comparision of Green and Conventional Extraction Methods on Lipid Yield and Fatty Acid Profiles of Fish Species. European Journal of Lipid Science and Technology, 120(12). https://doi.org/10.1002/ejlt.201800107
  • Piretti, M. V., Zuppa, F., Pagliuca, G., & Taioli, F. (1988). Investigation of the seasonal variations of fatty acid constituents in selected tissues of the bivalve mollusc scapharca inaequivalvis (bruguiere). Comparative Biochemistry and Physiology -- Part B: Biochemistry And 89(1), 183–187. https://doi.org/10.1016/0305-0491(88)90281-7
  • Polat, A., & Beklevik, G. (1999). The Importance of ω-3 Series Fatty Acids in Marine Fish Larvae Nutrition and Recent Developments. Turkish Journal of Veterinary and Animal Sciences, 23(EK3), 525–530.
  • Prato, E., & Biandolino, F. (2012). Total lipid content and fatty acid composition of commercially important fish species from the Mediterranean, Mar Grande Sea. Food Chemistry, 131(4), 1233–1239. https://doi.org/10.1016/j.foodchem.2011.09.110
  • Quignard, J.-P., & Pras, A. (1986). Wrasses: Family Labridae. In Fishes of the north-eastern Atlantic and the Mediterranean.
  • Rahman, S. A., Huah, T. S., Nassan, O., & Daud, N. M. (1995). Fatty acid composition of some Malaysian freshwater fish. Food Chemistry, 54(1), 45–49. https://doi.org/10.1016/0308-8146(95)92660-C
  • Rasoarahona, J. R. E., Barnathan, G., Bianchini, J. P., & Gaydou, E. M. (2005). Influence of season on the lipid content and fatty acid profiles of three tilapia species (Oreochromis niloticus, O. macrochir and Tilapia rendalli) from Madagascar. Food Chemistry, 91(4), 683–694. https://doi.org/10.1016/j.foodchem.2004.07.001
  • Robert, A., Mfilinge, P., Limbu, S. M., & Mwita, C. J. (2014). Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania. Journal of Lipids, 2014, 1–7. https://doi.org/10.1155/2014/712134
  • Sargent, J.., Tocher, D. R., & Bell, J. . G. (2002). The lipids. In J.. E. W. Halver & R. Hardy (Eds.), Fish Nutrition (pp. 181–257). Elsevier (Academic Press).
  • Schmidt, E. B., Arnesen, H., De Caterina, R., Rasmussen, L. H., & Kristensen, S. D. (2005). Marine n-3 polyunsaturated fatty acids and coronary heart disease: Part I. Background, epidemiology, animal data, effects on risk factors and safety. In Thrombosis Research (Vol. 115, Issue 3, pp. 163–170). https://doi.org/10.1016/j.thromres.2004.09.006
  • Sidhu, K. S. (2003). Health benefits and potential risks related to consumption of fish or fish oil. Regulatory Toxicology and Pharmacology, 38(3), 336–344. https://doi.org/10.1016/j.yrtph.2003.07.002
  • Simopoulos, A. P. (1991). Omega-3 fatty acids in health and disease and in growth and development. In American Journal of Clinical Nutrition (Vol. 54, Issue 3, pp. 438–463). https://doi.org/10.1093/ajcn/54.3.438
  • Smida, M. A. Ben, Bolje, A., Ouerhani, A., Barhoumi, M., Mejri, H., Cafsi, M. El, & Fehri-Bedoui, R. (2014). Effects of Drying on the Biochemical Composition of &lt; i&gt;Atherina boyeri&lt;/i&gt; from the Tunisian Coast. Food and Nutrition Sciences, 05(14), 1399–1407. https://doi.org/10.4236/fns.2014.514152
  • Tanakol, R., Yazici, Z., Şener, E., & Sencer, E. (1999). Fatty acid composition of 19 species of fish from the Black Sea and the Marmara sea. Lipids, 34(3), 291–297. https://doi.org/10.1007/s11745-999-0366-8
  • Teame, T., Natarajan, P., & Tesfay, Z. (2015). Proximate and mineral composition of some commercially important fish species of tekeze reservoir and lake Hashenge, Ethiopia. Journal of Fisheries and Aquatic Studies, 4(1), 160–164.
  • Vasconi, M., Caprino, F., Bellagamba, F., Busetto, M. L., Bernardi, C., Puzzi, C., & Moretti, V. M. (2015). Fatty acid composition of freshwater wild fish in subalpine lakes: A comparative study. Lipids, 50(3), 283–302. https://doi.org/10.1007/s11745-014-3978-4
  • Yavuzer, E. (2020). Comparing the fatty acid level of sand smelt (Atherina boyeri) with rainbow trout (Oncorhynchus mykiss) as a cheaper protein and fatty acid source. Acta Aquatica Turcica, 107–112. https://doi.org/10.22392/actaquatr.603538

Çekerek Barajı'ndan (Yozgat, Turkey) Avlanan Gümüş Balığının (Atherina boyeri) Yağ Asidi ve Besin Kompozisyonundaki Mevsimsel Değişimleri

Yıl 2021, Cilt: 17 Sayı: 3, 409 - 420, 01.09.2021
https://doi.org/10.22392/actaquatr.868642

Öz

Çekerek (Süreyyabey) Barajı'nda avlanan gümüş balığının (Atherina boyeri) besinsel ve yağ asidi kompozisyonunun mevsimsel değişimleri araştırılmıştır. Gümüş balığının mevsimsel besin kompozisyonu Ekim, Mart ve Temmuz aylarında sırasıyla protein için %17,00; %16,72; %15,64, lipid için %1,95; %2,00; %2,86, nem için %79,25; %79,17; %78,06 ve kül için %1,80; %2,10; %2,49 olarak bulunmuştur. Gümüş balığında en yüksek protein değerleri sonbahar ve ilkbaharda gözlenirken, en düşük protein değeri yazın gözlenmiştir. Gümüş balığının en yüksek yağ oranı yaz mevsiminde gözlenmiştir (p<0,05). Gümüş balığının yaz mevsimindeki nem içeriği sonbahar ve ilkbahar mevsimindeki nem içeriğinden önemli (p<0,05) ölçüde düşüktü. En düşük kül oranı sonbaharda görülürken, gümüş balığının en yüksek kül oranı yaz mevsiminde görülmüştür. Gümüş balığının besin ve yağ asidi kompozisyonu mevsimler boyunca değişkenlik göstermiştir (p<0,05). Gümüş balığının mevsimsel yağ asidi bileşimleri doymuş yağ asidi (SFA) için %24,63 ile %25,69, tekli doymamış yağ asidi (MUFA) için %20,75 ile %26,43 ve çoklu doymamış yağ asitleri için (PUFA) %28,29 ile %36,11 arasında değişim göstermiştir. Palmitik asit (16: 0), stearik asit (18: 0), palmitoleik asit (16: 1ω7), oleik asit (18: 1ω9), linoleik asit (LA, 18: 2ω6), araşidonik asit (ARA, 20: 4ω6), linolenik asit (18:3ω3), eikosapentaenoik asit (EPA, 20: 5ω3) ve dokosaheksaenoik asit (DHA, 22: 6ω3) gümüş balığının farklı mevsimlerdeki başlıca yağ asitleriydi. En yüksek EPA (%5,59-7,22) ve DHA (%12,33-19,77) oranı ilkbaharda görülmüştür. Sonuçlar, gümüş balığının iyi bir n-3 PUFA kaynağı ve insan beslenmesi için EPA + DHA açısından zengin olduğunu göstermiştir.

Proje Numarası

Project Number: 6602a-Turizm/18-225

Kaynakça

  • Abedi, E., & Sahari, M. A. (2014). Long-chain polyunsaturated fatty acid sources and evaluation of their nutritional and functional properties. In Food Science and Nutrition (Vol. 2, Issue 5, pp. 443–463). https://doi.org/10.1002/fsn3.121
  • Abou-Zied, A. S., Talab, A. S., Ibrahim, M. A., & Ibrahim, S. M. (2020). Quality attributes of artificial dried and dried salted sand smelt fish (Atherina boyeri). Egyptian Journal of Aquatic Biology and Fisheries, 24(7 Special issue), 307–317. https://doi.org/10.21608/EJABF.2020.120338
  • Ackman, R. G. (1989). Nutritional composition of fats in seafoods. In Progress in Food and Nutrition Science (Vol. 13, Issues 3–4, pp. 161–289).
  • Ahlgren, G., Gustafsson, I. ‐B, & Boberg, M. (1992). Fatty Acid Content and Chemical Composition of Freshwater Microalgae. Journal of Phycology, 28(1), 37–50. https://doi.org/10.1111/j.0022-3646.1992.00037.x
  • Ahlgren, G., Lundstedt, L., Brett, M., & Forsberg, C. (1990). Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. Journal of Plankton Research, 12(4), 809–818. https://doi.org/10.1093/plankt/12.4.809
  • Alasalvar, C., Taylor, K. D. A., Zubcov, E., Shahidi, F., & Alexis, M. (2002). Differentiation of cultured and wild sea bass (Dicentrarchus labrax): Total lipid content, fatty acid and trace mineral composition. Food Chemistry, 79(2), 145–150. https://doi.org/10.1016/S0308-8146(02)00122-X
  • Ali, M., Imran, M., Nadeem, M., Khan, M. K., Sohaib, M., Suleria, H. A. R., & Bashir, R. (2019). Oxidative stability and Sensoric acceptability of functional fish meat product supplemented with plant - based polyphenolic optimal extracts. Lipids in Health and Disease, 18(1). https://doi.org/10.1186/s12944-019-0982-y
  • AOAC. (1984). Official Methods of Analysis of AOAC International 14th. Ed. In Association of Official Analysis Chemists International. Washington, DC, USA.
  • AOAC. (1998). Official methods of analysis of the Association of Official Analytical Chemists International. In Official methods of analysis 16th. Ed. Association of Official Analytical Chemists. International, Inc., Gaithersburg, Maryland, USA., CD-ROM.
  • Bandarra, N. M., Batista, I., Nunes, M. L., & Empis, J. M. (2001). Seasonal variation in the chemical composition of horse-mackerel (Trachurus trachurus). European Food Research and Technology, 212(5), 535–539. https://doi.org/10.1007/s002170100299
  • Bartulović, V., Glamuzina, B., Conides, A., Dulčić, J., Lučić, D., Njire, J., & Kožul, V. (2004). Age, growth, mortality and sex ratio of sand smelt, Atherina boyeri Risso, 1810 (Pisces: Atherinidae) in the estuary of the Mala Neretva River (middle eastern Adriatic, Croatia). Journal of Applied Ichthyology, 20(5), 427–430. https://doi.org/10.1111/j.1439-0426.2004.00560.x
  • Benzer, S. (2018). First Record of the Sand Smelt Atherina boyeri Risso, 1810 in the Süreyyabey Dam Lake, Yeşilırmak Basin, Turkey. Annals of Biological Sciences, 6(2), 38–42.
  • Bilgin, Ş., Çetinkaya, S., & Bolat, Y. (2011). Changes on the nutritional compositions of the sand smelt (Atherina Boyeri Risso, 1810) marinade during storage. African Journal of Biotechnology, 10(16), 3197–3203. https://doi.org/10.5897/ajb10.2067
  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917. https://doi.org/10.1139/o59-099
  • Bouriga, N., Mili, S., Ennouri, R., Quignard, J. P., Trabelsi, M., & Faure, E. (2014). Reproductive parameters and seasonal variation in fatty acid composition of Atherina boyeri s. str. and A. lagunae populations from open sea, lagoonand island coasts of Tunisia. Cahiers de Biologie Marine, 55(2), 201–212. https://doi.org/10.21411/cbm.a.cc1ba07d
  • Branciari, R., Franceschini, R., Roila, R., Valiani, A., Pecorelli, I., Piersanti, A., Haouet, N., Framboas, M., & Ranucci, D. (2020). Nutritional value and contaminant risk assessment of some commercially important fishes and crawfish of lake Trasimeno, Italy. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/ijerph17072545
  • Bulut, H. (2018). Kapıaçmaz Göleti (Kovancılar, Elazığ) Zooplankton’unun Mevsimsel Değişimi. Turkish Journal of Agriculture - Food Science and Technology, 6(11), 1617. https://doi.org/10.24925/turjaf.v6i11.1617-1621.2106
  • Bulut, H., & Saler, S. (2014). Murat Nehri’nin (Elazığ-Palu İlçe Merkezi Sınırları İçindeki Bölümün’de) Zooplanktonu ve Değişimi. Turkish Journal of Agriculture - Food Science and Technology, 2(1), 13. https://doi.org/10.24925/turjaf.v2i1.13-17.32
  • Caramujo, M. J., Boschker, H. T. S., & Admiraal, W. (2008). Fatty acid profiles of algae mark the development and composition of harpacticoid copepods. Freshwater Biology, 53(1), 77–90. https://doi.org/10.1111/j.1365-2427.2007.01868.x
  • Cejas, J. R., Almansa, E., Jérez, S., Bolaños, A., Samper, M., & Lorenzo, A. (2004). Lipid and fatty acid composition of muscle and liver from wild and captive mature female broodstocks of white seabream, Diplodus sargus. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 138(1), 91–102. https://doi.org/10.1016/j.cbpc.2004.03.003
  • Chrisafi, E., Kaspiris, P., & Katselis, G. (2007). Feeding habits of sand smelt (Atherina boyeri, Risso 1810) in Trichonis Lake (Western Greece). Journal of Applied Ichthyology, 23(3), 209–214. https://doi.org/10.1111/j.1439-0426.2006.00824.x
  • Connor, W. E. (2000). Importance of n-3 fatty acids in health and disease. American Journal of Clinical Nutrition, 71(1 SUPPL.), 171–175. https://doi.org/10.1093/ajcn/71.1.171s
  • Çevik, C., Gündoğdu, S., & Alagöz Ergüden, S. (2018). New Record of the Big-Scale Sand Smelt Atherina boyeri Risso, 1810 (Atherinidae) in the Seyhan Dam Reservoir (Seyhan River Basin, Turkey). Natural and Engineering Sciences, 133–140. https://doi.org/10.28978/nesciences.424658
  • Dal Bosco, A., Mattioli, S., Mancini, S., Cartoni Mancinelli, A., Cotozzolo, E., & Castellini, C. (2019). Nutritional composition of raw and fried big-scale sand smelt (Atherina boyeri) from trasimeno lake. Italian Journal of Animal Science, 18(1), 608–614. https://doi.org/10.1080/1828051X.2018.1548915
  • Desvilettes, C., Bourdier, G., Amblard, C., & Barth, B. (1997). Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshwater Biology, 38(3), 629–637. https://doi.org/10.1046/j.1365-2427.1997.00241.x
  • Dridi, S., Romdhane, M. S., & Cafsi, M. El. (2017). Nutritional quality in terms of lipid content and fatty acid composition of neutral and polar lipids in the adductor muscle of the oyster Crassostrea gigas (Thunberg, 1794) farmed in the Bizert lagoon (Tunisia) in relation with sexual cycle and environmen. Egyptian Journal of Aquatic Research, 43(4), 329–336. https://doi.org/10.1016/j.ejar.2017.10.001
  • Effiong, B.N. and Mohammed, I. (2008). Effect of seasonal variation on the Nutrient composition in selected fish species in Lake Kainji - Nigeria. Nature and Science, 6(2), 2–6.
  • Ekmekçi, F. G., Kırankaya, Ş. G., Gençoǧlu, L., & Yoğurtçuoğlu, B. (2013). Present status of invasive fishes in inland waters of Turkey and assessment of the effects of invasion. Istanbul University Journal of Fisheries & Aquatic Sciences, 28(July), 105–140.
  • Fallah, A. A., Nematollahi, A., & Saei-Dehkordi, S. S. (2013). Proximate composition and fatty acid profile of edible tissues of Capoeta damascina (Valenciennes, 1842) reared in freshwater and brackish water. Journal of Food Composition and Analysis, 32(2), 150–154. https://doi.org/10.1016/j.jfca.2013.09.004
  • Ghioni, C., Bell, J. G., & Sargent, J. R. (1996). Polyunsaturated fatty acids in neutral lipids and phospholipids of some freshwater insects. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 114(2), 161–170. https://doi.org/10.1016/0305-0491(96)00019-3
  • Gogus, U., & Smith, C. (2010). N-3 omega fatty acids: a review of current knowledge. In International Journal of Food Science and Technology. https://doi.org/10.1111/j.1365-2621.2009.02151.x
  • Görgün, S., Akpinar, N., & Dirican, S. (2014). A comparative study on the fatty acid profiles of total lipid, neutral and polar lipids in the liver and muscle of capoeta sieboldii (steindachner, 1864) and capoeta baliki (Turan, kottelat, ekmekçi, Imamoǧlu, 2006) from Tödürge lake (Sivas, Turkey). Acta Alimentaria, 43(1), 170–181. https://doi.org/10.1556/AAlim.43.2014.1.17
  • Guler, G. O., Kiztanir, B., Aktumsek, A., Citil, O. B., & Ozparlak, H. (2008). Determination of the seasonal changes on total fatty acid composition and ω3/ω6 ratios of carp (Cyprinus carpio L.) muscle lipids in Beysehir Lake (Turkey). Food Chemistry, 108(2), 689–694. https://doi.org/10.1016/j.foodchem.2007.10.080
  • Ichihara, K. N. ich., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31(5), 535–539. https://doi.org/10.1007/BF02522648 Inhamuns, A. J., & Franco, M. R. B. (2008). EPA and DHA quantification in two species of freshwater fish from Central Amazonia. Food Chemistry, 107(2), 587–591. https://doi.org/10.1016/j.foodchem.2007.07.032
  • Izci, L., Bilgin, Ş., & Günlü, A. (2011a). Production of fish finger from sand smelt (Atherina boyeri, RISSO 1810) and determination of quality changes. African Journal of Biotechnology, 10(21), 4464–4469. https://doi.org/10.5897/AJB10.2093
  • Izci, L., Günlü, A., & Bilgin, Ş. (2011b). Production of fish chips from sand smelt (Atherina boyeri, RISSO 1810) and determination of some quality changes. Iranian Journal of Fisheries Sciences, 10(2), 230–241.
  • James Henderson, R., & Tocher, D. R. (1987). The lipid composition and biochemistry of freshwater fish. In Progress in Lipid Research (Vol. 26, Issue 4, pp. 281–347). https://doi.org/10.1016/0163-7827(87)90002-6
  • Keva, O., Tang, P., Käkelä, R., Hayden, B., Taipale, S. J., Harrod, C., & Kahilainen, K. K. (2019). Seasonal changes in European whitefish muscle and invertebrate prey fatty acid composition in a subarctic lake. Freshwater Biology, 64(11), 1908–1920. https://doi.org/10.1111/fwb.13381
  • Kinsella, J. (1987). Seafoods and fish oils in human health and disease. New York: Marcel Dekker. Köse, S., Koral, S., Özoĝul, Y., & Tufan, B. (2010). Fatty acid profile and proximate composition of Pacific mullet (Mugil so-iuy) caught in the Black Sea. International Journal of Food Science and Technology, 45(8), 1594–1602. https://doi.org/10.1111/j.1365-2621.2010.02309.x
  • Kris-Etherton, P. M., Harris, W. S., & Appel, L. J. (2002). Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. In Circulation (Vol. 106, Issue 21, pp. 2747–2757). https://doi.org/10.1161/01.CIR.0000038493.65177.94
  • Lauriano, E. R., Faggio, C., Capillo, G., Spanò, N., Kuciel, M., Aragona, M., & Pergolizzi, S. (2018). Immunohistochemical characterization of epidermal dendritic-like cells in giant mudskipper, Periophthalmodon schlosseri. Fish and Shellfish Immunology, 74, 380–385. https://doi.org/10.1016/j.fsi.2018.01.014
  • Leaf, A., & Weber, P. C. (1988). No Title. New England Journal of Medicine, 318, 549–555.
  • Leaf, Alexander, Kang, J. X., Xiao, Y. F., & Billman, G. E. (2003). Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. In Circulation (Vol. 107, Issue 21, pp. 2646–2652). https://doi.org/10.1161/01.cir.0000069566.78305.33
  • Linhartová, Z., Krejsa, J., Zajíc, T., Másílko, J., Sampels, S., & Mráz, J. (2018). Proximate and fatty acid composition of 13 important freshwater fish species in central Europe. Aquaculture International, 26(2), 695–711. https://doi.org/10.1007/s10499-018-0243-5
  • Luczynska, J., Paszczyk, B., & Luczynski, M. J. (2014). Fatty acid profiles in marine and freshwater fish from fish markets in northeastern Poland. Archives of Polish Fisheries, 22(3), 181–188. https://doi.org/10.2478/aopf-2014-0018
  • Lunn, J., & Theobald, H. E. (2006). The health effects of dietary unsaturated fatty acids. Nutrition Bulletin, 31(3), 178–224. https://doi.org/10.1111/j.1467-3010.2006.00571.x
  • Mahadevan, G., Pouladi, M., Stara, A., & Faggio, C. (2019). Nutritional evaluation of elongate mudskipper Pseudapocryptes elongatus (Cuvier, 1816) from Diamond Harbor, West Bengal, India. Natural Product Research. https://doi.org/10.1080/14786419.2019.1666388
  • Makhutova, O. N., Shulepina, S. P., Sharapova, T. A., Dubovskaya, O. P., Sushchik, N. N., Baturina, M. A., Pryanichnikova, E. G., Kalachova, G. S., & Gladyshev, M. I. (2016). Content of polyunsaturated fatty acids essential for fish nutrition in zoobenthos species. Freshwater Science, 35(4), 1222–1234. https://doi.org/10.1086/688760
  • Massresha, E., Mateos, H., Lewandowski, P., & Zewdue, A. (2017). Proximate Composition and Fatty Acid Content of Commercially Important Fish Species from Ethiopian Lakes: A Review. World Journal of Food Science and Technology, 1(3), 105–114. https://doi.org/10.11648/j.wjfst.20170103.14
  • Norrbin, M. F., Olsen, R. E., & Tande, K. S. (1990). Seasonal variation in lipid class and fatty acid composition of two small copepods in Balsfjorden, northern Norway. Marine Biology, 105(2), 205–211. https://doi.org/10.1007/BF01344288
  • Öksüz, A., Dikmen, M., Alkan, Ş. B., Yaylalı, O., & Demirtaş, S. (2019). Beyşehir Gölünden Avlanan Sazan ve Sudak Balıklarının Besin ve Yağ Asidi Bileşenlerinin Karşılaştırılması. Aquatic Research, 9(1), 13–17.
  • Özogul, Y., Özogul, F., & Alagoz, S. (2007). Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: A comparative study. Food Chemistry, 103(1), 217–223. https://doi.org/10.1016/j.foodchem.2006.08.009
  • Özogul, Y., Özogul, F., Çiçek, E., Polat, A., & Kuley, E. (2009). Fat content and fatty acid compositions of 34 marine water fish species from the Mediterranean Sea. International Journal of Food Sciences and Nutrition, 60(6), 464–475. https://doi.org/10.1080/09637480701838175
  • Ozogul, Y., Polat, A., Uçak, I., & Ozogul, F. (2011). Seasonal fat and fatty acids variations of seven marine fish species from the Mediterranean Sea. European Journal of Lipid Science and Technology, 113(12), 1491–1498. https://doi.org/10.1002/ejlt.201000554
  • Ozogul, Y., Ucar, Y., Takadaş, F., Durmus, M., Köşker, A. R., & Polat, A. (2018). Comparision of Green and Conventional Extraction Methods on Lipid Yield and Fatty Acid Profiles of Fish Species. European Journal of Lipid Science and Technology, 120(12). https://doi.org/10.1002/ejlt.201800107
  • Piretti, M. V., Zuppa, F., Pagliuca, G., & Taioli, F. (1988). Investigation of the seasonal variations of fatty acid constituents in selected tissues of the bivalve mollusc scapharca inaequivalvis (bruguiere). Comparative Biochemistry and Physiology -- Part B: Biochemistry And 89(1), 183–187. https://doi.org/10.1016/0305-0491(88)90281-7
  • Polat, A., & Beklevik, G. (1999). The Importance of ω-3 Series Fatty Acids in Marine Fish Larvae Nutrition and Recent Developments. Turkish Journal of Veterinary and Animal Sciences, 23(EK3), 525–530.
  • Prato, E., & Biandolino, F. (2012). Total lipid content and fatty acid composition of commercially important fish species from the Mediterranean, Mar Grande Sea. Food Chemistry, 131(4), 1233–1239. https://doi.org/10.1016/j.foodchem.2011.09.110
  • Quignard, J.-P., & Pras, A. (1986). Wrasses: Family Labridae. In Fishes of the north-eastern Atlantic and the Mediterranean.
  • Rahman, S. A., Huah, T. S., Nassan, O., & Daud, N. M. (1995). Fatty acid composition of some Malaysian freshwater fish. Food Chemistry, 54(1), 45–49. https://doi.org/10.1016/0308-8146(95)92660-C
  • Rasoarahona, J. R. E., Barnathan, G., Bianchini, J. P., & Gaydou, E. M. (2005). Influence of season on the lipid content and fatty acid profiles of three tilapia species (Oreochromis niloticus, O. macrochir and Tilapia rendalli) from Madagascar. Food Chemistry, 91(4), 683–694. https://doi.org/10.1016/j.foodchem.2004.07.001
  • Robert, A., Mfilinge, P., Limbu, S. M., & Mwita, C. J. (2014). Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania. Journal of Lipids, 2014, 1–7. https://doi.org/10.1155/2014/712134
  • Sargent, J.., Tocher, D. R., & Bell, J. . G. (2002). The lipids. In J.. E. W. Halver & R. Hardy (Eds.), Fish Nutrition (pp. 181–257). Elsevier (Academic Press).
  • Schmidt, E. B., Arnesen, H., De Caterina, R., Rasmussen, L. H., & Kristensen, S. D. (2005). Marine n-3 polyunsaturated fatty acids and coronary heart disease: Part I. Background, epidemiology, animal data, effects on risk factors and safety. In Thrombosis Research (Vol. 115, Issue 3, pp. 163–170). https://doi.org/10.1016/j.thromres.2004.09.006
  • Sidhu, K. S. (2003). Health benefits and potential risks related to consumption of fish or fish oil. Regulatory Toxicology and Pharmacology, 38(3), 336–344. https://doi.org/10.1016/j.yrtph.2003.07.002
  • Simopoulos, A. P. (1991). Omega-3 fatty acids in health and disease and in growth and development. In American Journal of Clinical Nutrition (Vol. 54, Issue 3, pp. 438–463). https://doi.org/10.1093/ajcn/54.3.438
  • Smida, M. A. Ben, Bolje, A., Ouerhani, A., Barhoumi, M., Mejri, H., Cafsi, M. El, & Fehri-Bedoui, R. (2014). Effects of Drying on the Biochemical Composition of &lt; i&gt;Atherina boyeri&lt;/i&gt; from the Tunisian Coast. Food and Nutrition Sciences, 05(14), 1399–1407. https://doi.org/10.4236/fns.2014.514152
  • Tanakol, R., Yazici, Z., Şener, E., & Sencer, E. (1999). Fatty acid composition of 19 species of fish from the Black Sea and the Marmara sea. Lipids, 34(3), 291–297. https://doi.org/10.1007/s11745-999-0366-8
  • Teame, T., Natarajan, P., & Tesfay, Z. (2015). Proximate and mineral composition of some commercially important fish species of tekeze reservoir and lake Hashenge, Ethiopia. Journal of Fisheries and Aquatic Studies, 4(1), 160–164.
  • Vasconi, M., Caprino, F., Bellagamba, F., Busetto, M. L., Bernardi, C., Puzzi, C., & Moretti, V. M. (2015). Fatty acid composition of freshwater wild fish in subalpine lakes: A comparative study. Lipids, 50(3), 283–302. https://doi.org/10.1007/s11745-014-3978-4
  • Yavuzer, E. (2020). Comparing the fatty acid level of sand smelt (Atherina boyeri) with rainbow trout (Oncorhynchus mykiss) as a cheaper protein and fatty acid source. Acta Aquatica Turcica, 107–112. https://doi.org/10.22392/actaquatr.603538
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Esra Balıkçı 0000-0001-5015-0101

Proje Numarası Project Number: 6602a-Turizm/18-225
Yayımlanma Tarihi 1 Eylül 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 17 Sayı: 3

Kaynak Göster

APA Balıkçı, E. (2021). Seasonal Variations in Fatty Acid and Nutritional Composition of Sand Smelt (Atherina boyeri) caught from Cekerek Dam (Yozgat, Turkey). Acta Aquatica Turcica, 17(3), 409-420. https://doi.org/10.22392/actaquatr.868642