Araştırma Makalesi
BibTex RIS Kaynak Göster

Motorlu Deniz Salyangozu Et Ekstraksiyon Makinesinin Tasarımı, Geliştirilmesi ve Performans Değerlendirmesi

Yıl 2024, Cilt: 20 Sayı: 3, 218 - 241, 01.09.2024
https://doi.org/10.22392/actaquatr.1418335

Öz

Deniz salyangozu kabuklarının verimli bir şekilde parçalanması ve ayrılması, deniz salyangozu eti işlemede temel birim işlemlerdir. Mekanizasyon, deniz salyangozu etinin zamanında işlenmesini sağlamak için her derde deva olmaya devam ediyor. Bu çalışma, deniz salyangozundan et ekstraksiyonu için uygun bir makinenin tasarımını yapmak, geliştirmek ve performansını değerlendirmek için yapılmıştır. Makinenin performansı, çatlama hızı (CS), Çalkalama hızı (AS), ilerleme hızı (FR) ve ısı şartlandırma süresi (HCT) gibi belirli işleme parametrelerine bağlıyken, deniz salyangozu kırma verimliliği (CE), ayırma verimliliği (SE), Verim kapasitesi (TP) ve deniz salyangozu et kaybı (PML) yanıtlardı. Maksimum deniz salyangozu eti %84.05 CE, 130 rpm CS, 0.2 kgs-1 FR ve 6 dakika HCT'de elde edildi. SE için elde edilen sonuç, HCT, CS, AS ve FR sırasıyla 6 dk, 130 rpm, 1,11 m/s ve 0,40 kg/s'ye ayarlandığında %78,79'luk en verimli deniz salyangozu eti ayrımının elde edilebileceğini gösterdi. 26,79 kg/s ile en yüksek TP değeri, makine 130 rpm'lik CS'de, 0,40 kg/s'lik FR'de 6 dakikalık HCT altında 1,23 m/s'lik AS'de çalıştırıldığında elde edildi. Ayrıca, %10,71'lik en düşük PML değeri, makine 120 rpm'lik CS'de, 0,30 kg/s'lik ilerleme hızında 4 dakikalık HCT altında 1,04 m/s'lik AS'de çalıştırıldığında elde edilmiştir. Bu makine parametrelerinin deniz salyangozu eti işleme üzerinde önemli etkileri vardır. Çalışma, deniz salyangozu etinin hasat sonrası işlenmesinin zaman alıcı, ham manuel yönteminin yerini almak için uygun bir seçenek sağlamıştır.

Kaynakça

  • Akubuo, C., & Eje, B. E. (2002). PH-Postharvest technology: Palm kernel and shell separator. Bioresources Engineering, 81(2),193-199.
  • Collins, J. A., Busby, H. R., & Staab, G. H. (2010). Mechanical design of machine elements and machines: failure preventive perspective. US: John Wiley & Sons, Inc.
  • Dixit, J., & Ravindra, K. (2022). Design and development of walnut cracking machine. Agricultural Engineering International: CIGR Journal, 24(4),143-152.
  • Ekop, I. E., Simonyan, K. J., & Onwuka, U.N. (2019). Comparative analysis of thermal properties of two varieties of periwinkle relevant to its processing equipment design. American Journal Food Science and Technology,7(6),189-194. https://doi.org/10.12691/ajfst-7-6-4
  • Ekop, I. E., Simonyan, K. J., & Onwuka, U.N. (2021). Effects of processing factors and conditions on the cracking efficiency of Tympanotonus fuscatus and Pachymelania aurita periwinkles: Response surface approach. Journal Agriculture and Food Research, 3(3),1-7. https://doi.org/10.1016/j.jafr.2020.100094
  • Ekop, I. E., Simonyan, K. J., & Onwuka, U. N. (2022). Comparative analysis of mechanical properties of two varieties of periwinkle relevant to its processing equipment design. Agricultural Engineering International: CIGR Journal, 24(2),122-136.
  • Ekop, I. E., Simonyan, K. J., Onwuka, U. N. & Ekop, I. E (2023). Optimization of processing machine parameters for separating efficiency of periwinkles. Journal of Aquatic Food Product Technology.33(1),98-110 https://doi.org/10.1080/10498850.2023.2291371
  • Etoamaihe, U. J., & Iwe, M. O. (2014). Development and performance evaluation of a reciprocating motion cassava shredder. International Journal of Engineering Science, 3(4),6-15.
  • FAG Catalogue WL 41520EA (2006). Rolling bearing. https://www.ahrinternational.com/PDF_catalogues (pp. 9-15).
  • Fagbami, E. A., Okeeseni, A., Omonigho, B., Iseru, E., Akpovwovwo, T., & Awolola, E.K. (2014). Forms and design analysis of mechanical shafts used in agricultural machineries. International Journal of Agricultural Science and Natural Resources, 1(5),103-106.
  • Harris, T. A., & Rotzalas, M. N. (2006). Essential concept of bearing technology. Rolling Bearing Analysis, 5th Ed., CRC press. Taylor and Francis Group,NY.
  • Hicks, T. G. (2004). Standard handbook of engineering calculations. McGraw-Hill. ttps://www.pdfdrive.com/standard handbook of engineering calculations
  • Hussain, S. Z., Ammatullah, B., Kanojia, V., Reshi, M., Naseer, B., & Naik, H. R. (2018). Design and development of technology for walnut cracking. Journal of Food Science and Technology, 55(12),4973-4983.
  • Igbeka, J. C. (2013). Agricultural processing and storage engineering. Ibadan University Press.53.
  • Jamabo, N., & Chinda, A. (2010). Aspects of the ecology of Tympanotonus fuscatus var fuscatus (Linnaeus, 1758) in the mangrove swamps of the upper Bonny River, Niger Delta, Nigeria. Current Research Journal of Biological Science, 2(1),42-7.
  • Khurmi, R. S., & Gupta, J. K. (2008). A textbook of machine design. (pp. 678-738). S. Chand publishing.
  • Mmom, P. C., & Arokoyu, S. B. (2010). Mangrove forest depletion, biodiversity loss and traditional resources management practices in the Niger Delta, Nigeria. Research Journal of Applied Science, Engineering and Technology, 2(1),28-34.
  • Ndirika, V. I. O., & Onwualu, A. P. (2016). Design principles for post-harvest machines, First edition. (pp.126-131). Naphtali Print, Nigeria.
  • Odu, N. N., Obafemi, A., & Njoku, H.O. (2010). Comparative assessment of bacteriological quality and proximate composition of laboratory shucked and traditionally shucked tropical periwinkle (Tympanotonus fuscatus), Scientia Africana, 9(1),140-9.
  • Otto, H. (2015). New general mathematics for secondary senior schools 1, (pp. 43-44). Pearson Edu Ltd, Eng.
  • Rajput, R. K. (2007). A textbook of fluid mechanics and hydraulic machines. 6th Ed. (pp.280-291) S. Chand.
  • Sahay, K. M., & Singh, R. K. (1994). Unit operations of agricultural process, (pp. 65-74). Vikas Publishing House PVT Ltd.
  • Shigley, J. E., Mischke, C. R., Budnyas, R. G., & Nisbett, K. J. (2011). Shigley's mechanical engineering design (SI Units), (Sie). Tata McGraw-Hill. https://ia903102.us.archive.org.
  • Umani, K. C., Fakayode, O. A., Ituen, E. U., & Okokon, F. B. (2019). Development and testing of an automated contact plate unit for a cassava grater. Computers and electronics in agriculture, 157, 530-540.
  • Umani, K. C., Ituen, E. U. U., & Fakayode, O. A. (2020). Development and testing of a double-action cassava grater with an automated contact plate. Journal of Food Process Engineering. https://doi.org/10.1111/jfpe.13372
  • V-Belt Design Manual (2017). The right belt for all applications 2017. https://www.bandousa.com

Design, Development and Performance Evaluation of a Motorized Periwinkle Meat Extraction Machine

Yıl 2024, Cilt: 20 Sayı: 3, 218 - 241, 01.09.2024
https://doi.org/10.22392/actaquatr.1418335

Öz

Efficient cracking and separation of periwinkle shells are essential unit operations in periwinkle meat processing. Mechanization remains the panacea to achieving timely processing of periwinkle meat. This study was carried out to design, develop, and evaluate the performance of a viable machine for the extraction of meat from periwinkle. The performance of the machine was dependent on certain processing parameters, such as cracking speed (CS), Agitating speed (AS), feed rate (FR) and heat conditioning time (HCT), while periwinkle cracking efficiency (CE), separating efficiency (SE), Throughput capacity (TP) and periwinkle meat loss (PML) were the responses. The maximum periwinkle meat CE of 84.05 % was obtained at CS of 130 rpm, FR of 0.2 kgs-1 and HCT of 6 min. The result for SE indicated that most efficient periwinkle meat separation of 78.79% can be achieved when HCT, CS, AS and FR set at 6 min,130 rpm,1.11m/s and 0.40 kg/s respectively. Highest TP value of 26.79 kg/h was obtained when the machine was operated at CS of 130 rpm, AS of 1.23 m/s under the HCT of 6 min at FR of 0.40 kg/s. Also, the lowest PML value of 10.71 % was obtained when the machine was operated at CS of 120 rpm, AS of 1.04 m/s under the HCT of 4 min at feed rate of 0.30 kg/s. These machine parameters have significant effects on the periwinkle meat processing. The study has provided a viable option to replace the time-consuming, crude manual method of periwinkle meat postharvest processing.

Kaynakça

  • Akubuo, C., & Eje, B. E. (2002). PH-Postharvest technology: Palm kernel and shell separator. Bioresources Engineering, 81(2),193-199.
  • Collins, J. A., Busby, H. R., & Staab, G. H. (2010). Mechanical design of machine elements and machines: failure preventive perspective. US: John Wiley & Sons, Inc.
  • Dixit, J., & Ravindra, K. (2022). Design and development of walnut cracking machine. Agricultural Engineering International: CIGR Journal, 24(4),143-152.
  • Ekop, I. E., Simonyan, K. J., & Onwuka, U.N. (2019). Comparative analysis of thermal properties of two varieties of periwinkle relevant to its processing equipment design. American Journal Food Science and Technology,7(6),189-194. https://doi.org/10.12691/ajfst-7-6-4
  • Ekop, I. E., Simonyan, K. J., & Onwuka, U.N. (2021). Effects of processing factors and conditions on the cracking efficiency of Tympanotonus fuscatus and Pachymelania aurita periwinkles: Response surface approach. Journal Agriculture and Food Research, 3(3),1-7. https://doi.org/10.1016/j.jafr.2020.100094
  • Ekop, I. E., Simonyan, K. J., & Onwuka, U. N. (2022). Comparative analysis of mechanical properties of two varieties of periwinkle relevant to its processing equipment design. Agricultural Engineering International: CIGR Journal, 24(2),122-136.
  • Ekop, I. E., Simonyan, K. J., Onwuka, U. N. & Ekop, I. E (2023). Optimization of processing machine parameters for separating efficiency of periwinkles. Journal of Aquatic Food Product Technology.33(1),98-110 https://doi.org/10.1080/10498850.2023.2291371
  • Etoamaihe, U. J., & Iwe, M. O. (2014). Development and performance evaluation of a reciprocating motion cassava shredder. International Journal of Engineering Science, 3(4),6-15.
  • FAG Catalogue WL 41520EA (2006). Rolling bearing. https://www.ahrinternational.com/PDF_catalogues (pp. 9-15).
  • Fagbami, E. A., Okeeseni, A., Omonigho, B., Iseru, E., Akpovwovwo, T., & Awolola, E.K. (2014). Forms and design analysis of mechanical shafts used in agricultural machineries. International Journal of Agricultural Science and Natural Resources, 1(5),103-106.
  • Harris, T. A., & Rotzalas, M. N. (2006). Essential concept of bearing technology. Rolling Bearing Analysis, 5th Ed., CRC press. Taylor and Francis Group,NY.
  • Hicks, T. G. (2004). Standard handbook of engineering calculations. McGraw-Hill. ttps://www.pdfdrive.com/standard handbook of engineering calculations
  • Hussain, S. Z., Ammatullah, B., Kanojia, V., Reshi, M., Naseer, B., & Naik, H. R. (2018). Design and development of technology for walnut cracking. Journal of Food Science and Technology, 55(12),4973-4983.
  • Igbeka, J. C. (2013). Agricultural processing and storage engineering. Ibadan University Press.53.
  • Jamabo, N., & Chinda, A. (2010). Aspects of the ecology of Tympanotonus fuscatus var fuscatus (Linnaeus, 1758) in the mangrove swamps of the upper Bonny River, Niger Delta, Nigeria. Current Research Journal of Biological Science, 2(1),42-7.
  • Khurmi, R. S., & Gupta, J. K. (2008). A textbook of machine design. (pp. 678-738). S. Chand publishing.
  • Mmom, P. C., & Arokoyu, S. B. (2010). Mangrove forest depletion, biodiversity loss and traditional resources management practices in the Niger Delta, Nigeria. Research Journal of Applied Science, Engineering and Technology, 2(1),28-34.
  • Ndirika, V. I. O., & Onwualu, A. P. (2016). Design principles for post-harvest machines, First edition. (pp.126-131). Naphtali Print, Nigeria.
  • Odu, N. N., Obafemi, A., & Njoku, H.O. (2010). Comparative assessment of bacteriological quality and proximate composition of laboratory shucked and traditionally shucked tropical periwinkle (Tympanotonus fuscatus), Scientia Africana, 9(1),140-9.
  • Otto, H. (2015). New general mathematics for secondary senior schools 1, (pp. 43-44). Pearson Edu Ltd, Eng.
  • Rajput, R. K. (2007). A textbook of fluid mechanics and hydraulic machines. 6th Ed. (pp.280-291) S. Chand.
  • Sahay, K. M., & Singh, R. K. (1994). Unit operations of agricultural process, (pp. 65-74). Vikas Publishing House PVT Ltd.
  • Shigley, J. E., Mischke, C. R., Budnyas, R. G., & Nisbett, K. J. (2011). Shigley's mechanical engineering design (SI Units), (Sie). Tata McGraw-Hill. https://ia903102.us.archive.org.
  • Umani, K. C., Fakayode, O. A., Ituen, E. U., & Okokon, F. B. (2019). Development and testing of an automated contact plate unit for a cassava grater. Computers and electronics in agriculture, 157, 530-540.
  • Umani, K. C., Ituen, E. U. U., & Fakayode, O. A. (2020). Development and testing of a double-action cassava grater with an automated contact plate. Journal of Food Process Engineering. https://doi.org/10.1111/jfpe.13372
  • V-Belt Design Manual (2017). The right belt for all applications 2017. https://www.bandousa.com
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sucul Kültür ve Balıkçılık (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Inemesit Ekop 0000-0003-3328-3775

Joseph Bassey 0000-0002-9685-3723

Ifiok Ekop 0000-0002-5732-4626

Promise Etim 0000-0002-8758-8630

Godwin Akpan 0000-0002-9307-7829

Olalade Olatunji 0000-0003-3338-1164

Paul Tosin 0000-0003-1819-8433

Kayode Simonyan 0000-0001-5000-7751

Nelson Onwuka 0000-0002-1399-7116

Erken Görünüm Tarihi 9 Temmuz 2024
Yayımlanma Tarihi 1 Eylül 2024
Gönderilme Tarihi 15 Ocak 2024
Kabul Tarihi 22 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 20 Sayı: 3

Kaynak Göster

APA Ekop, I., Bassey, J., Ekop, I., Etim, P., vd. (2024). Design, Development and Performance Evaluation of a Motorized Periwinkle Meat Extraction Machine. Acta Aquatica Turcica, 20(3), 218-241. https://doi.org/10.22392/actaquatr.1418335