Araştırma Makalesi
BibTex RIS Kaynak Göster

Genelleştirilmiş Türevli Yarıasal Halkaların Lie İdealleri

Yıl 2018, Cilt: 8 Sayı: 1, 1 - 12, 30.06.2018

Öz

R, 2-torsion free bir yarıasal halka ve U, R halkasının bir merkez tarafından kapsanılmayan kare-kapalı Lie ideali olsun. Eğer her x,y∈R için F(xy) = F(x)y + xd(y), koşulunu sağlayan bir d:R→R türevi varsa F dönüşümüne R halkasının d ile belirlenmiş bir genelleştirilmiş türevi denir. Bu çalışmada, aşağıdaki koşullardan biri sağlanırsa d dönüşümünün U üzerinde komüting dönüşüm olduğu gösterilecektir: i) F(u)u = ±uG(u), ii) [F(u),v] = ±[u,G(v)], iii) F(u)∘v = ±u∘G(v), iv) [F(u),v] = ±u∘G(v), v) F([u,v]) = [F(u),v] + [d(v),u]. Burada G:R→R dönüşümü h:R→R türevi ile belirlenmiş bir genelleştirilmiş türevdir.

Kaynakça

  • R. Awtar, Lie structure in prime rings with derivations, Publ. Math. Debrecen 31, 1984, 209-215.
  • J. Bergen, I. N. Herstein, W. Kerr, Lie ideals and derivation of prime rings, J. of Algebra 71, 1981, 259-267.
  • M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33, 1991, 89-93.
  • M. Bresar, On skew-commuting mappings of rings, Bull. Austral. Math. Soc. 47, 1993, 291--296.
  • N. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada Sect. III. 49, 1955, 19-52.
  • M. Hongan, N. Rehman, R. M. Al-Omary, Lie ideals and Jordan triple derivations in rings: Rend. Semin. Mat. Univ. Padova, 125, 2011, 147--156.
  • Ö. Gölbaşı, E. Koç, Generalized derivations on Lie ideals in prime rings: Turk. J. Math., 35, 2011, 23-28.
  • P. H. Lee, T. K. Lee, Lie ideals of prime rings with derivations, Bull. Institute of Math. Acedemia Sinica, 11, 1983, 75-79.
  • E. C. Posner, Derivations in prime rings, Proc Amer. Math. Soc. 8, 1957, 1093-1100.
  • N. Rehman, M. Hongan, Generalized Jordan derivations on Lie ideals associate with Hochschild 2-cocycles of rings, Rend. Circ. Mat. Palermo 60 (3), 2011, 437-444.
  • J. Vukman, Identities with derivations and autommorphisms on semiprime rings, Internat J. Math. and Math. Sci. 2005 (7), 2005, 1031-1038.

Lie Ideals of Semiprime Rings with Generalized Derivations

Yıl 2018, Cilt: 8 Sayı: 1, 1 - 12, 30.06.2018

Öz

Let R be a 2- torsion free semiprime ring, U a noncentral square-closed Lie ideal of R. A map F:R→R  is called a generalized derivations if there exists a derivation d:R→R such that F(xy)=F(x)y+xd(y), for all x,y∈R. In the present paper, we shall prove that h is commuting map on U if any one of the following holds: i) F(u)u=±uG(u), ii) [F(u),v]=±[u,G(v)], iii) F(u)∘v=± u∘G(v), iv) [F(u),v]=±u∘G(v), v)F([u,v])=[F(u),v]+[d(v),u] for all u,v∈U, where G:R→R  is a generalized derivation associated with the derivation h:R→R.

Kaynakça

  • R. Awtar, Lie structure in prime rings with derivations, Publ. Math. Debrecen 31, 1984, 209-215.
  • J. Bergen, I. N. Herstein, W. Kerr, Lie ideals and derivation of prime rings, J. of Algebra 71, 1981, 259-267.
  • M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33, 1991, 89-93.
  • M. Bresar, On skew-commuting mappings of rings, Bull. Austral. Math. Soc. 47, 1993, 291--296.
  • N. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada Sect. III. 49, 1955, 19-52.
  • M. Hongan, N. Rehman, R. M. Al-Omary, Lie ideals and Jordan triple derivations in rings: Rend. Semin. Mat. Univ. Padova, 125, 2011, 147--156.
  • Ö. Gölbaşı, E. Koç, Generalized derivations on Lie ideals in prime rings: Turk. J. Math., 35, 2011, 23-28.
  • P. H. Lee, T. K. Lee, Lie ideals of prime rings with derivations, Bull. Institute of Math. Acedemia Sinica, 11, 1983, 75-79.
  • E. C. Posner, Derivations in prime rings, Proc Amer. Math. Soc. 8, 1957, 1093-1100.
  • N. Rehman, M. Hongan, Generalized Jordan derivations on Lie ideals associate with Hochschild 2-cocycles of rings, Rend. Circ. Mat. Palermo 60 (3), 2011, 437-444.
  • J. Vukman, Identities with derivations and autommorphisms on semiprime rings, Internat J. Math. and Math. Sci. 2005 (7), 2005, 1031-1038.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Matematik
Yazarlar

Emine Koç Sögütcü

Öznur Gölbaşı

Yayımlanma Tarihi 30 Haziran 2018
Gönderilme Tarihi 1 Kasım 2017
Kabul Tarihi 4 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 8 Sayı: 1

Kaynak Göster

APA Koç Sögütcü, E., & Gölbaşı, Ö. (2018). Lie Ideals of Semiprime Rings with Generalized Derivations. Adıyaman University Journal of Science, 8(1), 1-12.
AMA Koç Sögütcü E, Gölbaşı Ö. Lie Ideals of Semiprime Rings with Generalized Derivations. ADYU J SCI. Haziran 2018;8(1):1-12.
Chicago Koç Sögütcü, Emine, ve Öznur Gölbaşı. “Lie Ideals of Semiprime Rings With Generalized Derivations”. Adıyaman University Journal of Science 8, sy. 1 (Haziran 2018): 1-12.
EndNote Koç Sögütcü E, Gölbaşı Ö (01 Haziran 2018) Lie Ideals of Semiprime Rings with Generalized Derivations. Adıyaman University Journal of Science 8 1 1–12.
IEEE E. Koç Sögütcü ve Ö. Gölbaşı, “Lie Ideals of Semiprime Rings with Generalized Derivations”, ADYU J SCI, c. 8, sy. 1, ss. 1–12, 2018.
ISNAD Koç Sögütcü, Emine - Gölbaşı, Öznur. “Lie Ideals of Semiprime Rings With Generalized Derivations”. Adıyaman University Journal of Science 8/1 (Haziran 2018), 1-12.
JAMA Koç Sögütcü E, Gölbaşı Ö. Lie Ideals of Semiprime Rings with Generalized Derivations. ADYU J SCI. 2018;8:1–12.
MLA Koç Sögütcü, Emine ve Öznur Gölbaşı. “Lie Ideals of Semiprime Rings With Generalized Derivations”. Adıyaman University Journal of Science, c. 8, sy. 1, 2018, ss. 1-12.
Vancouver Koç Sögütcü E, Gölbaşı Ö. Lie Ideals of Semiprime Rings with Generalized Derivations. ADYU J SCI. 2018;8(1):1-12.

...