Bishop Çatısı ile İlişkilendirilmiş Hasimoto Yüzeyleri
Yıl 2019,
Cilt: 9 Sayı: 1, 13 - 22, 28.06.2019
Alev Kelleci
,
Mehmet Bektaş
,
Mahmut Ergüt
Öz
Bu çalışmada Öklidyen 3-uzayındaki Hasimoto yüzeyleri
incelenmiştir. İlk olarak, Öklidyen 3-uzayındaki Hasimoto yüzeylerinin
geometrik özellikleri incelenmiştir. Özellikle Bishop çatısı ile ilişkilendirilmiş
bu yüzeylerin eğrilikleri elde edilmiştir. Daha sonrasında bu yüzeylerin Bishop
çatısına göre parametre eğrilerinin bazı karakterizasyonları verilmiştir.
Kaynakça
- Referans1 Rogers C., Schief W.K., Backlund and Darboux Transformations, Geometry of Modern Applications in Soliton Theory. Cambridge University Press (2002).
- Referans2 Hasimoto H., A Soliton on a vortex
lament. J. Fluid. Mech. 51, 477485 (1972).
- Referans3 Erdoğdu M., Özdemir M., Geometry of Hasimoto Surfaces in Minkowski 3-Space, Math Phys Anal Geom (2014) 17:169181.
- Referans4 Bishop L.R., There is more than one way to frame a curve, Amer. Math. Monthly, Volume 82,Issue 3, 246-251,1975.
- Referans5 Bukcu B., Karacan, M. K., The Slant Helices According to Bishop Frame, World Academy of Science, Engineering and Technology Vol:3 2009- 11-20.
- Referans6 Yılmaz S., Turgut M., A new version of Bishop frame and an application to spherical images, Journal of Mathematical Analysis and Applications, 371 (2010) 764776.
- Referans7 Inoguchi J., Binormal curves in Minkowski 3-space, IJMMS 21 (2003), 13651368.
- Referans8 Eisenhart L. P., A Treatise On The Di¤erential Geometry Of Curves And Surfaces (1909).
- Referans9 Da Rios L. S., On the motions of an unbounded uid with a vortex filament of any shape, (in Italian), Rend. Circ. Mat. Palermo 22, 117 (1906).
The Hasimoto Surface According to Bishop Frame
Yıl 2019,
Cilt: 9 Sayı: 1, 13 - 22, 28.06.2019
Alev Kelleci
,
Mehmet Bektaş
,
Mahmut Ergüt
Öz
In this paper, we
investigate the Hasimoto surfaces in Euclidean 3- space. Firstly, we
investigate the geometric properties of these surfaces in Euclidean 3-space.
Especially, we obtain the curvatures of Hasimoto surface according to Bishop
frame. Then we give some characterization of parameter curves obtained
according to Bishop frame of Hasimoto surfaces.
Kaynakça
- Referans1 Rogers C., Schief W.K., Backlund and Darboux Transformations, Geometry of Modern Applications in Soliton Theory. Cambridge University Press (2002).
- Referans2 Hasimoto H., A Soliton on a vortex
lament. J. Fluid. Mech. 51, 477485 (1972).
- Referans3 Erdoğdu M., Özdemir M., Geometry of Hasimoto Surfaces in Minkowski 3-Space, Math Phys Anal Geom (2014) 17:169181.
- Referans4 Bishop L.R., There is more than one way to frame a curve, Amer. Math. Monthly, Volume 82,Issue 3, 246-251,1975.
- Referans5 Bukcu B., Karacan, M. K., The Slant Helices According to Bishop Frame, World Academy of Science, Engineering and Technology Vol:3 2009- 11-20.
- Referans6 Yılmaz S., Turgut M., A new version of Bishop frame and an application to spherical images, Journal of Mathematical Analysis and Applications, 371 (2010) 764776.
- Referans7 Inoguchi J., Binormal curves in Minkowski 3-space, IJMMS 21 (2003), 13651368.
- Referans8 Eisenhart L. P., A Treatise On The Di¤erential Geometry Of Curves And Surfaces (1909).
- Referans9 Da Rios L. S., On the motions of an unbounded uid with a vortex filament of any shape, (in Italian), Rend. Circ. Mat. Palermo 22, 117 (1906).