Effect of Bacteriophage Application on Growth of Pseudomonas aeruginosa in Milk
Yıl 2023,
Sayı: 5, 17 - 21, 31.03.2023
Ahmet Bestil
,
Naim Deniz Ayaz
,
Gizem Çufaoğlu
Kaynakça
- Dash, K. K., Fayaz, U., Dar, A. H., Shams, R., Manzoor, S.,Sundarsing, A., Deka, P. ve Khan, S. A. (2022). A comprehensive review on heat treatments and related impact on the quality and microbial safety of milk and milk-based products. Food Chemistry Advances, 1, 100041. https://doi.org/10.1016/j.focha.2022.100041
- De Jonghe, V., Coorevits, A., Van Hoorde, K., Messens, W., Van Landschoot, A., De Vos, P. ve Heyndrickx, M. (2011). Influence of storage conditions on the growth of Pseudomonas species in refrigerated raw milk. Applied and Environmental Microbiology, 77(2), 460–470. https://doi.org/10.1128/AEM.00521-10
- De Melo, A. G., Levesque, S. ve Moineau, S. (2018). Phages as friends and enemies in food processing. Current Opinion in Biotechnology, 49, 185–190. https://doi.org/10.1016/j.copbio.2017.09.004
- Do Nascimento, E. C., Sabino, M. C., Corguinha, L. D. R., Targino, B. N., Lange, C. C., Pinto, C. L. O., Pinto, P. F., Vidigal, P. M. P., Sant'Ana, A. S. ve Hungaro, H. M. (2022). Lytic bacteriophages UFJF_PfDIW6 and UFJF_PfSW6 prevent Pseudomonas fluorescens growth in vitro and the proteolytic-caused spoilage of raw milk during chilled storage. Food Microbiology, 101, 103892. https://doi.org/10.1016/j.fm.2021.103892
- Ercolini, D., Russo, F., Ferrocino, I. ve Villani, F. (2009). Molecular identification of mesophilic and psychrotrophic bacteria from raw cow's milk. Food Microbiology, 26(2), 228–231. https://doi.org/10.1016/j.fm.2008.09.005
- García, P., Madera, C., Martínez, B., Rodríguez, A. ve Evaristo Suárez, J. (2009). Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. Journal of Dairy Science, 92(7), 3019–3026. https://doi.org/10.3168/jds.2008-1744
- García-Anaya, M. C., Sepulveda, D. R., Sáenz-Mendoza, A. I., Rios, C., Zamudio-Flores, P. B. ve Acosto, C. (2020). Phages as biocontrol agents in dairy products. Trends in Food Science and Technology, 95, 10-20. https://doi.org/10.1016/j.tifs.2019.10.006
- Hu, Z., Liu, F. ve Meng, X. (2016). Isolation and characterisation of lytic bacteriophages against Pseudomonas spp., a novel biological intervention for preventing spoilage of raw milk. International Dairy Journal, 55, 72-78. https://doi.org/10.1016/j.idairyj.2015.11.011
- Jun, J. W., Kim, H. J., Yun, S. K., Chai, J. Y., Lee, B ve Park, S. C. (2015). Isolation and comparative genomic analysis of T1-Like Shigella bacteriophage pSf-2. Current Microbiology, 72, pages235–241. https://doi.org/10.1007/s00284-015-0935-2
- Loc-Carrillo, C. ve Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage, 1(2), 111–114. https://doi.org/10.4161/bact.1.2.14590
- Nan, L., Ren, G., Wang, D. ve Yang, K. (2016). Antibacterial Performance of Cu-Bearing Stainless Steel against Staphylococcus aureus and Pseudomonas aeruginosa in Whole Milk. Journal of Materials Science & Technology, 32(5), 445–451. https://doi.org/10.1016/j.jmst.2016.01.002
- Ribeiro Júnior, J. C., de Oliveira, A. M., Silva, F. G., Tamanini, R., de Oliveira, A. L. M. ve Beloti, V. (2018). The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, 101(1), 75–83. https://doi.org/10.3168/jds.2017-13069
- Samaržija, D., Zamberlin, Š. ve Pogačić, T. (2012). Psychrotrophic bacteria and their negative effects on milk and dairy products quality. Mljekarstvo: Časopis Za Unaprjeđenje Proizvodnje I Prerade Mlijeka, 62(2), 77-95.
- Sırıken, B. ve Öz, V. (2017). Pseudomonas aeruginosa: Özellikleri ve Quorum Sensing Mekanizması. Gıda ve Yem Bilimi Teknolojisi Dergisi, (18), 42-52.
- Tanaka, C., Yamada, K., Takeuchi, H., Inokuchi, Y., Kashiwagi, A. ve Toba, T. (2018). A Lytic Bacteriophage for Controlling Pseudomonas lactis in Raw Cow's Milk. Applied and Environmental Microbiology, 84(18), 00111-18. https://doi.org/10.1128/aem.00111-18
- Yuan, Y., Peng, Q., Wu, D., Kou, Z., Wu, Y., Liu, P. ve Gao, M. (2015). Effects of actin- like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis. Applied and Environmental Microbiology, 81(1), 339–350. https://doi.org/10.1128/AEM.02889-14
- Zhao, Y., Ye, M., Zhang, X., Sun, M., Zhang, Z., Chao, H., Huang, D., Wan, J., Zhang, S., Jiang, X., Sun, D., Yuan, Y. ve Hu, F. (2019). Comparing polyvalent bacteriophage and bacteriophage cocktails for controlling antibiotic-resistant bacteria in soil-plant system. Science of The Total Environment, 657, 918-925. https://doi.org/10.1016/j.scitotenv.2018.11.457
Bakteriyofaj Uygulamasının Sütte Pseudomonas aeruginosa’nın Üremesi Üzerine Etkisi
Yıl 2023,
Sayı: 5, 17 - 21, 31.03.2023
Ahmet Bestil
,
Naim Deniz Ayaz
,
Gizem Çufaoğlu
Öz
Pseudomonos aeruginosa suşları düşük sıcaklıklarda ürettikleri enzimler nedeniyle süt ve süt ürünlerinde bozukluklara neden olmaktadır. Gıda endüstrisinde bozulma ve kalite kaybına neden olan mikroorganizmaların eliminasyonu için bakteriyofajlar başarılı bir şekilde kullanılmaktadır. Bu çalışmanın amacı atık sulardan izole edilen P. aeruginosa’ya karşı litik etkili bir fajın etkinliğini değerlendirmektir. İki farklı Multiplicity of Infection (MOI)’de P. aeruginosa ile kontamine edilen UHT sütlerde bakteriyofajın 4°C’de 1, 3, 6 ve 24. saatlerde etkisi incelenmiştir. Sonuç olarak iki farklı MOI’ de bakteri sayıları 1,30 log kob/ml değerinin altında kaldığı görülmüştür.
Kaynakça
- Dash, K. K., Fayaz, U., Dar, A. H., Shams, R., Manzoor, S.,Sundarsing, A., Deka, P. ve Khan, S. A. (2022). A comprehensive review on heat treatments and related impact on the quality and microbial safety of milk and milk-based products. Food Chemistry Advances, 1, 100041. https://doi.org/10.1016/j.focha.2022.100041
- De Jonghe, V., Coorevits, A., Van Hoorde, K., Messens, W., Van Landschoot, A., De Vos, P. ve Heyndrickx, M. (2011). Influence of storage conditions on the growth of Pseudomonas species in refrigerated raw milk. Applied and Environmental Microbiology, 77(2), 460–470. https://doi.org/10.1128/AEM.00521-10
- De Melo, A. G., Levesque, S. ve Moineau, S. (2018). Phages as friends and enemies in food processing. Current Opinion in Biotechnology, 49, 185–190. https://doi.org/10.1016/j.copbio.2017.09.004
- Do Nascimento, E. C., Sabino, M. C., Corguinha, L. D. R., Targino, B. N., Lange, C. C., Pinto, C. L. O., Pinto, P. F., Vidigal, P. M. P., Sant'Ana, A. S. ve Hungaro, H. M. (2022). Lytic bacteriophages UFJF_PfDIW6 and UFJF_PfSW6 prevent Pseudomonas fluorescens growth in vitro and the proteolytic-caused spoilage of raw milk during chilled storage. Food Microbiology, 101, 103892. https://doi.org/10.1016/j.fm.2021.103892
- Ercolini, D., Russo, F., Ferrocino, I. ve Villani, F. (2009). Molecular identification of mesophilic and psychrotrophic bacteria from raw cow's milk. Food Microbiology, 26(2), 228–231. https://doi.org/10.1016/j.fm.2008.09.005
- García, P., Madera, C., Martínez, B., Rodríguez, A. ve Evaristo Suárez, J. (2009). Prevalence of bacteriophages infecting Staphylococcus aureus in dairy samples and their potential as biocontrol agents. Journal of Dairy Science, 92(7), 3019–3026. https://doi.org/10.3168/jds.2008-1744
- García-Anaya, M. C., Sepulveda, D. R., Sáenz-Mendoza, A. I., Rios, C., Zamudio-Flores, P. B. ve Acosto, C. (2020). Phages as biocontrol agents in dairy products. Trends in Food Science and Technology, 95, 10-20. https://doi.org/10.1016/j.tifs.2019.10.006
- Hu, Z., Liu, F. ve Meng, X. (2016). Isolation and characterisation of lytic bacteriophages against Pseudomonas spp., a novel biological intervention for preventing spoilage of raw milk. International Dairy Journal, 55, 72-78. https://doi.org/10.1016/j.idairyj.2015.11.011
- Jun, J. W., Kim, H. J., Yun, S. K., Chai, J. Y., Lee, B ve Park, S. C. (2015). Isolation and comparative genomic analysis of T1-Like Shigella bacteriophage pSf-2. Current Microbiology, 72, pages235–241. https://doi.org/10.1007/s00284-015-0935-2
- Loc-Carrillo, C. ve Abedon, S. T. (2011). Pros and cons of phage therapy. Bacteriophage, 1(2), 111–114. https://doi.org/10.4161/bact.1.2.14590
- Nan, L., Ren, G., Wang, D. ve Yang, K. (2016). Antibacterial Performance of Cu-Bearing Stainless Steel against Staphylococcus aureus and Pseudomonas aeruginosa in Whole Milk. Journal of Materials Science & Technology, 32(5), 445–451. https://doi.org/10.1016/j.jmst.2016.01.002
- Ribeiro Júnior, J. C., de Oliveira, A. M., Silva, F. G., Tamanini, R., de Oliveira, A. L. M. ve Beloti, V. (2018). The main spoilage-related psychrotrophic bacteria in refrigerated raw milk. Journal of Dairy Science, 101(1), 75–83. https://doi.org/10.3168/jds.2017-13069
- Samaržija, D., Zamberlin, Š. ve Pogačić, T. (2012). Psychrotrophic bacteria and their negative effects on milk and dairy products quality. Mljekarstvo: Časopis Za Unaprjeđenje Proizvodnje I Prerade Mlijeka, 62(2), 77-95.
- Sırıken, B. ve Öz, V. (2017). Pseudomonas aeruginosa: Özellikleri ve Quorum Sensing Mekanizması. Gıda ve Yem Bilimi Teknolojisi Dergisi, (18), 42-52.
- Tanaka, C., Yamada, K., Takeuchi, H., Inokuchi, Y., Kashiwagi, A. ve Toba, T. (2018). A Lytic Bacteriophage for Controlling Pseudomonas lactis in Raw Cow's Milk. Applied and Environmental Microbiology, 84(18), 00111-18. https://doi.org/10.1128/aem.00111-18
- Yuan, Y., Peng, Q., Wu, D., Kou, Z., Wu, Y., Liu, P. ve Gao, M. (2015). Effects of actin- like proteins encoded by two Bacillus pumilus phages on unstable lysogeny, revealed by genomic analysis. Applied and Environmental Microbiology, 81(1), 339–350. https://doi.org/10.1128/AEM.02889-14
- Zhao, Y., Ye, M., Zhang, X., Sun, M., Zhang, Z., Chao, H., Huang, D., Wan, J., Zhang, S., Jiang, X., Sun, D., Yuan, Y. ve Hu, F. (2019). Comparing polyvalent bacteriophage and bacteriophage cocktails for controlling antibiotic-resistant bacteria in soil-plant system. Science of The Total Environment, 657, 918-925. https://doi.org/10.1016/j.scitotenv.2018.11.457