Araştırma Makalesi
BibTex RIS Kaynak Göster

Generalized Quaternions and Matrix Algebra

Yıl 2023, Cilt: 23 Sayı: 3, 638 - 647, 28.06.2023
https://doi.org/10.35414/akufemubid.1182145

Öz

In this paper, we established the connection between generalized quaternion algebra and real (complex) matrix algebras by using Hamilton operators. We obtained real and complex matrices corresponding to the real and complex basis of the generalized quaternions. Also, we investigated the basis features of real and complex matrices. We get Pauli matrices corresponding to generalized quaternions. Then, we have shown that the algebra produced by these matrices is isomorphic to the Clifford algebra Cl(E_αβ^3) produced by generalized space E_αβ^3.
Finally, we studied the relations among the symplectic matrices group corresponding to generalized unit quaternions, generalized unitary matrices group, and generalized orthogonal matrices group.

Kaynakça

  • Alagoz, Y. Oral, K.H. and Yuce, S., 2012. Split quaternion matrices. Miskolc Mathematical Notes, 13(2), 223–232.
  • Aragon, G., Aragon J.L. and Rodriguez, M.A., 1997. Clifford algebras and geometric Algebra. Adv. Appl. Clifford Al., 7(2), 91–102.
  • Ata, E. and Yaylı, Y., 2009. Split quaternions and semi-Euclidean projective spaces. Chaos, Solitons and Fractals, 41(4), 1910–1915.
  • Ata ,E., Kemer, Y. and Atasoy, A., 2012. Quadratic Formulas for Generalized Quaternions. Dumlupınar ¨Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28, 27–34.
  • Ata, E. and Yıldırım, Y., 2018. A Different Polar Representation for Generalized and Generalized Dual Quaternions. Adv. Appl. Clifford Al., 28(4), 77.
  • [Ata, E., Savcı, Ü.Z., 2021. Spherical kinematics in 3-dimensional generalized space. International Journal of Geometric Methods in Modern Physics, 18(3), 2150033.
  • Catoni, F., Cannata, R., Catoni, V. and Zampetti, P., 2005. N-dimensional geometries generated by hypercomplex numbers. Advances in Applied Clifford Algebras, 15(1), 1–25.
  • Cockle, J., 1849. On Systems of Algebra Involving More than One Imaginary. Philos. Mag. (series 3), 35, 434–435.
  • Grob, J., Trenkler, G. and Troschke, S.O., 2003. Quaternions: further contributions to a matrix oriented approach. Linear Algebra Appl., 326(2), 251–255.
  • Hamilton, W.R., 1853. Lectures on quaternions, Landmark Writings in Western Mathematics.
  • Hamilton, W.R., 1866. Elements of quaternions, Longmans, Green and Company.
  • Jafari, M., 2012 Generalized hamilton operators and lie groups, Ph.D. Thesis, Ankara University, .
  • Jafarı, M. and Yaylı, Y., 2015. Generalızed Quaternions and Rotation in 3-Space E3αβ. TWMS J. Pure Appl. Math., 6(2), 224–232.
  • Lam, T.Y., 2005. Introduction to Quadratic Forms Over Fields, American Mathematical Society, USA.
  • Özdemir, M. A. and Ergin, A., 2006. Rotations with unit timelike quaternions in Minkowski 3-space. Journal of geometry and physics, 56(2), 322–336.
  • Sangwine, S.J. and Le Bihan, N., 2010. Quaternion polar representation with a complex modulus and complex argument inspired by the Cayley-Dickson form. Adv. Appl. Clifford Al., 20(1), 111–120.

Genelleştirilmiş Kuaterniyonlar ve Matris Cebiri

Yıl 2023, Cilt: 23 Sayı: 3, 638 - 647, 28.06.2023
https://doi.org/10.35414/akufemubid.1182145

Öz

Bu çalışmada, Hamilton operatörlerini kullanarak genelleştirilmiş kuaterniyon cebiri ile gerçek (kompleks) matris cebirleri arasındaki bağlantıyı kurduk. Genelleştirilmiş kuaterniyonların gerçel ve kompleks temeline karşılık gelen gerçel ve kompleks matrisler elde ettik. Ayrıca, gerçek ve kompleks matrislerin temel özelliklerini araştırdık. Genelleştirilmiş kuaterniyonlara karşılık gelen Pauli matrislerini elde ettik. Daha sonra, bu matrisler tarafından üretilen cebirin, genelleştirilmiş E_αβ^3 uzayı tarafından üretilen Clifford cebiri Cl(E_αβ^3) ile izomorf olduğunu gösterdik.
Son olarak, genelleştirilmiş birim kuaterniyonlara karşılık gelen simplektik matrisler grubu, genelleştirilmiş birim matrisler grubu ve genelleştirilmiş ortogonal matrisler grubu arasındaki ilişkileri inceledik.

Kaynakça

  • Alagoz, Y. Oral, K.H. and Yuce, S., 2012. Split quaternion matrices. Miskolc Mathematical Notes, 13(2), 223–232.
  • Aragon, G., Aragon J.L. and Rodriguez, M.A., 1997. Clifford algebras and geometric Algebra. Adv. Appl. Clifford Al., 7(2), 91–102.
  • Ata, E. and Yaylı, Y., 2009. Split quaternions and semi-Euclidean projective spaces. Chaos, Solitons and Fractals, 41(4), 1910–1915.
  • Ata ,E., Kemer, Y. and Atasoy, A., 2012. Quadratic Formulas for Generalized Quaternions. Dumlupınar ¨Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28, 27–34.
  • Ata, E. and Yıldırım, Y., 2018. A Different Polar Representation for Generalized and Generalized Dual Quaternions. Adv. Appl. Clifford Al., 28(4), 77.
  • [Ata, E., Savcı, Ü.Z., 2021. Spherical kinematics in 3-dimensional generalized space. International Journal of Geometric Methods in Modern Physics, 18(3), 2150033.
  • Catoni, F., Cannata, R., Catoni, V. and Zampetti, P., 2005. N-dimensional geometries generated by hypercomplex numbers. Advances in Applied Clifford Algebras, 15(1), 1–25.
  • Cockle, J., 1849. On Systems of Algebra Involving More than One Imaginary. Philos. Mag. (series 3), 35, 434–435.
  • Grob, J., Trenkler, G. and Troschke, S.O., 2003. Quaternions: further contributions to a matrix oriented approach. Linear Algebra Appl., 326(2), 251–255.
  • Hamilton, W.R., 1853. Lectures on quaternions, Landmark Writings in Western Mathematics.
  • Hamilton, W.R., 1866. Elements of quaternions, Longmans, Green and Company.
  • Jafari, M., 2012 Generalized hamilton operators and lie groups, Ph.D. Thesis, Ankara University, .
  • Jafarı, M. and Yaylı, Y., 2015. Generalızed Quaternions and Rotation in 3-Space E3αβ. TWMS J. Pure Appl. Math., 6(2), 224–232.
  • Lam, T.Y., 2005. Introduction to Quadratic Forms Over Fields, American Mathematical Society, USA.
  • Özdemir, M. A. and Ergin, A., 2006. Rotations with unit timelike quaternions in Minkowski 3-space. Journal of geometry and physics, 56(2), 322–336.
  • Sangwine, S.J. and Le Bihan, N., 2010. Quaternion polar representation with a complex modulus and complex argument inspired by the Cayley-Dickson form. Adv. Appl. Clifford Al., 20(1), 111–120.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematiksel Fizik
Bölüm Makaleler
Yazarlar

Erhan Ata 0000-0003-2388-6345

Ümit Ziya Savcı 0000-0003-2772-9283

Erken Görünüm Tarihi 22 Haziran 2023
Yayımlanma Tarihi 28 Haziran 2023
Gönderilme Tarihi 29 Eylül 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 3

Kaynak Göster

APA Ata, E., & Savcı, Ü. Z. (2023). Generalized Quaternions and Matrix Algebra. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(3), 638-647. https://doi.org/10.35414/akufemubid.1182145
AMA Ata E, Savcı ÜZ. Generalized Quaternions and Matrix Algebra. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Haziran 2023;23(3):638-647. doi:10.35414/akufemubid.1182145
Chicago Ata, Erhan, ve Ümit Ziya Savcı. “Generalized Quaternions and Matrix Algebra”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 3 (Haziran 2023): 638-47. https://doi.org/10.35414/akufemubid.1182145.
EndNote Ata E, Savcı ÜZ (01 Haziran 2023) Generalized Quaternions and Matrix Algebra. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 3 638–647.
IEEE E. Ata ve Ü. Z. Savcı, “Generalized Quaternions and Matrix Algebra”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 3, ss. 638–647, 2023, doi: 10.35414/akufemubid.1182145.
ISNAD Ata, Erhan - Savcı, Ümit Ziya. “Generalized Quaternions and Matrix Algebra”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/3 (Haziran 2023), 638-647. https://doi.org/10.35414/akufemubid.1182145.
JAMA Ata E, Savcı ÜZ. Generalized Quaternions and Matrix Algebra. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:638–647.
MLA Ata, Erhan ve Ümit Ziya Savcı. “Generalized Quaternions and Matrix Algebra”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 3, 2023, ss. 638-47, doi:10.35414/akufemubid.1182145.
Vancouver Ata E, Savcı ÜZ. Generalized Quaternions and Matrix Algebra. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(3):638-47.