Araştırma Makalesi
BibTex RIS Kaynak Göster

Numerical Modeling of the Flow of a Fluid Jet Containing Solid Particles towards the Plate

Yıl 2023, Cilt: 23 Sayı: 6, 1542 - 1550, 28.12.2023
https://doi.org/10.35414/akufemubid.1287525

Öz

The flow of a viscous fluid containing solid particles in a certain profile and towards a moving plate covers the problems of different engineering fields. This phenomenon, modeled as a two-phase stagnation point flow, is also useful in solving problems in many application areas. For this reason, it is necessary to model the behavior of a Newtonian fluid containing spherical solid particles towards a moving horizontal plate under the influence of magnetic field and to determine the parameters that affect the behavior and to determine the scales of these effects. For this purpose, conservation of mass and equations of motion for fluid and granular phase were reduced to an ordinary differential equation system using appropriate similarity transformations and the equations were solved numerically employing bvc4c method. According to the obtained results, as the fluid-particle interaction parameter increases, the magnitude of the particle and fluid velocity components converged to each other. In addition, the increase in both the magnetic and the fluid-particle interaction parameters increases the shear stress magnitudes on the plate.

Kaynakça

  • Ariel, P. D., 1994. Hiemenz flow in hydromagnetics. Acta Mechanica, 103 (1–4), 31–43.
  • Bilgiç, B., Alanbel Ersin, B., Barış, S. 2016. Three- Dimensional Hydromagnetic Flow Arising In a Porous Flat Slider. American Journal of Engineering Research (AJER), 5 (6), 118-122.
  • Datta, N. and Mishra, S. K., 1980. Two-dimensional stagnation point flow of a dusty fluid near an oscillating plate. Acta Mechanica, 36 (1–2), 71–78.
  • Datta, N. and Mishra, S. K., 1980. Two-dimensional stagnation point flow of a dusty fluid near an oscillating plate. Acta Mechanica, 36 (1–2), 71–78.
  • Demir, M. Ş. and Barış, S., 2016. MHD stagnation flow of a Newtonian fluid towards a uniformly heated and moving vertical plate. Journal of Applied Fluid Mechanics, 9 (3), 1735–3645.
  • Glauert, M. B., 1956. The laminar boundary layer on oscillating plates and cylinders. Journal of Fluid Mechanics, 1 (1), 97–110.
  • Hiemenz, K., 1911. Die grenzschicht an einem in den gleichformigen flussigkeitsstrom eingetauchten geraden kreiszylinder. Dinglers Polytechnisches Journal, 326, 321–324.
  • Homann, F., 1936. Der einfluss grosser zahigkeit bei der strömung um den zylinder und um die kugel. Journal of Applied Mathematics and Mechanics. (ZAMM ), 16 (3), 153–164.
  • Howarth, L., 1951. The boundary layer in three dimensional flow. Part II: The flow near a stagnation point. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science., 42 (335), 1433–1440.
  • Kalpana,G., Madhura, K.R., Kudenatti, R.B.,2019, Impact of temperature-dependant viscosity and thermal conductivity on MHD boundary layer flow of two-phase dusty fluid through permeable medium. Engineering Science and Technology, an International Journal. 22 (2), 416-427.
  • Libby, P. A., 1974. Wall shear at a three-dimensional stagnation point with a moving wall. AIAA Journal, 12 (3), 408–409.
  • Marble, F. E., 1962. Dynamics of a gas containing small solid particles. Proc. 5th AGARD Colloq. Combust. Propuls., 175–213.
  • Mohaghegh, M. R. and Rahimi, A. B., 2016. Three -dimensional stagnation-point flow and heat transfer of a dusty fluid toward a stretching sheet. Journal of Heat Transfer, 138 (11), 112001
  • Na, T. Y., 1979. Computational methods in engineering boundary value problems, New York Academic Press, ISBN: 0125126506.
  • Neuringer, J. L. and Mcilroy, W., 1958. Incompressible two-dimensional stagnationpoint flow of an electrically conducting viscous fluid in the presence of a magnetic field. Journal of Aerospace Engineering, 25 (3), 194–198.
  • Prasannakumara, B. C., Gireesha, B. J. and Manjunatha, P. T., 2015. Melting phenomenon in MHD stagnation point flow of dusty fluid over a stretching sheet in the presence of thermal radiation and non-uniform heat source/sink. International Journal of Computational Methods in Engineering Science and Mechanics, 16 (5), 265–274.
  • Ramesh, G. K., Gireesha, B. J. and Bagewadi, C. S., 2012. MHD flow of a dusty fluid near the stagnation point over a permeable stretching sheet with non-uniform source/sink. International Journal of Heat and Mass Transfer, 15 (17–18), 4900–4907.
  • Saffman, P. G., 1956. On the motion of small spheroidal particles in a viscous liquid. Journal of Fluid Mechanics, 1 (5), 540–553.
  • Stokes, G. G., 1851. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, 9, 8–106.
  • Torobin, L. B. and Gauvin, W. H., 1959a. Fundamental aspects of solid-gas flow part:I Introductory concepts and idelized sphere motion in viscous regime. Canadian Journal of Chemical Engineering., 37 (4), 129–141. Torobin, L. B. and Gauvin, W. H., 1959b. Fundametal aspects of solid-gas flow part: II the sphere wake in steady laminar fluids. Canadian Journal of Chemical Engineering, 37 (5), 167–176.
  • Torobin, L. B. and Gauvin, W. H., 1959c. Fundamental aspects of solid-gas flow part: III Accelerated motion of a particle in a fluid. Canadian Journal of Chemical Engineering, 37 (6), 224–236.
  • Torobin, L. B. and Gauvin, W. H., 1960a. Fundamental aspects of solids-gas flow part:IV The effects of particle rotation, roughness and shape. Canadian Journal of Chemical Engineering, 38 (5), 142–153.
  • Torobin, L. B. and Gauvin, W. H., 1960b. Fundametal aspects of solid-gas flow part :V The effects of fluid turbulence on the particle drag coefficient. Canadian Journal of Chemical Engineering, 38 (6), 189–200.
  • Torobin, L. B. and Gauvin, W. H., 1961. Fundamental aspects of solids-gas flow part:VI Multiparticle behavior in turbulent fluids. Canadian Journal of Chemical Engineering, 39 (3), 113–120.
  • Wang, C. Y., 1973. Axisymmetric stagnation flow towards a moving plate. AICHE Journal, 19 (5), 1080–1081.

Katı Zerreler İçeren Bir Akışkan Hüzmesinin Plakaya Doğru Akışının Sayısal Yöntemlerle Modellenmesi

Yıl 2023, Cilt: 23 Sayı: 6, 1542 - 1550, 28.12.2023
https://doi.org/10.35414/akufemubid.1287525

Öz

Belli bir profilde katı zerreler barındıran viskoz bir akışkanın hareketli bir plakaya doğru akışı farklı mühendislik alanlarını ilgilendiren problemleri kapsamaktadır. İki fazlı durma noktası akışı olarak modellenen bu fenomen birçok uygulama alanındaki problemlerin çözümünde de kullanışlıdır. Bu sebeple küresel katı zerreler içeren Newtonian bir akışkanın hareketli bir yatay plakaya doğru gerçekleştirdiği akışın manyetik alan etkisi altındaki davranışının modellenmesi ve davranış üzerinde etkili olan parametrelerin belirlenmesi ile bu etkilerin ölçeklerinin tespiti gereklidir. Bunun için akışkan ve zerre faz için kütlenin korunumu ve hareket denklemleri uygun benzerlik dönüşümleri kullanılarak adi diferansiyel denklem takımına dönüştürülmüş ve elde dilen denklemlere bvp4c algoritması uygulanarak sayısal çözümler elde edilmiştir. Elde edilen sonuçlara göre akışkan-zerre etkileşim parametresi arttıkça zerre ve akışkanın hız bileşenlerinin büyüklükleri birbirlerine yaklaşmaktadır. Ayrıca hem manyetik parametrenin hem de akışkan-zerre etkileşim parametresinin artışı plaka üzerindeki kayma gerilmesi değerlerini artırmaktadır.

Kaynakça

  • Ariel, P. D., 1994. Hiemenz flow in hydromagnetics. Acta Mechanica, 103 (1–4), 31–43.
  • Bilgiç, B., Alanbel Ersin, B., Barış, S. 2016. Three- Dimensional Hydromagnetic Flow Arising In a Porous Flat Slider. American Journal of Engineering Research (AJER), 5 (6), 118-122.
  • Datta, N. and Mishra, S. K., 1980. Two-dimensional stagnation point flow of a dusty fluid near an oscillating plate. Acta Mechanica, 36 (1–2), 71–78.
  • Datta, N. and Mishra, S. K., 1980. Two-dimensional stagnation point flow of a dusty fluid near an oscillating plate. Acta Mechanica, 36 (1–2), 71–78.
  • Demir, M. Ş. and Barış, S., 2016. MHD stagnation flow of a Newtonian fluid towards a uniformly heated and moving vertical plate. Journal of Applied Fluid Mechanics, 9 (3), 1735–3645.
  • Glauert, M. B., 1956. The laminar boundary layer on oscillating plates and cylinders. Journal of Fluid Mechanics, 1 (1), 97–110.
  • Hiemenz, K., 1911. Die grenzschicht an einem in den gleichformigen flussigkeitsstrom eingetauchten geraden kreiszylinder. Dinglers Polytechnisches Journal, 326, 321–324.
  • Homann, F., 1936. Der einfluss grosser zahigkeit bei der strömung um den zylinder und um die kugel. Journal of Applied Mathematics and Mechanics. (ZAMM ), 16 (3), 153–164.
  • Howarth, L., 1951. The boundary layer in three dimensional flow. Part II: The flow near a stagnation point. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science., 42 (335), 1433–1440.
  • Kalpana,G., Madhura, K.R., Kudenatti, R.B.,2019, Impact of temperature-dependant viscosity and thermal conductivity on MHD boundary layer flow of two-phase dusty fluid through permeable medium. Engineering Science and Technology, an International Journal. 22 (2), 416-427.
  • Libby, P. A., 1974. Wall shear at a three-dimensional stagnation point with a moving wall. AIAA Journal, 12 (3), 408–409.
  • Marble, F. E., 1962. Dynamics of a gas containing small solid particles. Proc. 5th AGARD Colloq. Combust. Propuls., 175–213.
  • Mohaghegh, M. R. and Rahimi, A. B., 2016. Three -dimensional stagnation-point flow and heat transfer of a dusty fluid toward a stretching sheet. Journal of Heat Transfer, 138 (11), 112001
  • Na, T. Y., 1979. Computational methods in engineering boundary value problems, New York Academic Press, ISBN: 0125126506.
  • Neuringer, J. L. and Mcilroy, W., 1958. Incompressible two-dimensional stagnationpoint flow of an electrically conducting viscous fluid in the presence of a magnetic field. Journal of Aerospace Engineering, 25 (3), 194–198.
  • Prasannakumara, B. C., Gireesha, B. J. and Manjunatha, P. T., 2015. Melting phenomenon in MHD stagnation point flow of dusty fluid over a stretching sheet in the presence of thermal radiation and non-uniform heat source/sink. International Journal of Computational Methods in Engineering Science and Mechanics, 16 (5), 265–274.
  • Ramesh, G. K., Gireesha, B. J. and Bagewadi, C. S., 2012. MHD flow of a dusty fluid near the stagnation point over a permeable stretching sheet with non-uniform source/sink. International Journal of Heat and Mass Transfer, 15 (17–18), 4900–4907.
  • Saffman, P. G., 1956. On the motion of small spheroidal particles in a viscous liquid. Journal of Fluid Mechanics, 1 (5), 540–553.
  • Stokes, G. G., 1851. On the effect of the internal friction of fluids on the motion of pendulums. Transactions of the Cambridge Philosophical Society, 9, 8–106.
  • Torobin, L. B. and Gauvin, W. H., 1959a. Fundamental aspects of solid-gas flow part:I Introductory concepts and idelized sphere motion in viscous regime. Canadian Journal of Chemical Engineering., 37 (4), 129–141. Torobin, L. B. and Gauvin, W. H., 1959b. Fundametal aspects of solid-gas flow part: II the sphere wake in steady laminar fluids. Canadian Journal of Chemical Engineering, 37 (5), 167–176.
  • Torobin, L. B. and Gauvin, W. H., 1959c. Fundamental aspects of solid-gas flow part: III Accelerated motion of a particle in a fluid. Canadian Journal of Chemical Engineering, 37 (6), 224–236.
  • Torobin, L. B. and Gauvin, W. H., 1960a. Fundamental aspects of solids-gas flow part:IV The effects of particle rotation, roughness and shape. Canadian Journal of Chemical Engineering, 38 (5), 142–153.
  • Torobin, L. B. and Gauvin, W. H., 1960b. Fundametal aspects of solid-gas flow part :V The effects of fluid turbulence on the particle drag coefficient. Canadian Journal of Chemical Engineering, 38 (6), 189–200.
  • Torobin, L. B. and Gauvin, W. H., 1961. Fundamental aspects of solids-gas flow part:VI Multiparticle behavior in turbulent fluids. Canadian Journal of Chemical Engineering, 39 (3), 113–120.
  • Wang, C. Y., 1973. Axisymmetric stagnation flow towards a moving plate. AICHE Journal, 19 (5), 1080–1081.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği
Bölüm Makaleler
Yazarlar

Bahar Alanbel Ersin 0000-0002-9249-2502

Derya Karabulut 0000-0002-1903-9525

Faruk Örteş 0000-0003-4802-3810

Erken Görünüm Tarihi 22 Aralık 2023
Yayımlanma Tarihi 28 Aralık 2023
Gönderilme Tarihi 25 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 23 Sayı: 6

Kaynak Göster

APA Alanbel Ersin, B., Karabulut, D., & Örteş, F. (2023). Katı Zerreler İçeren Bir Akışkan Hüzmesinin Plakaya Doğru Akışının Sayısal Yöntemlerle Modellenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 23(6), 1542-1550. https://doi.org/10.35414/akufemubid.1287525
AMA Alanbel Ersin B, Karabulut D, Örteş F. Katı Zerreler İçeren Bir Akışkan Hüzmesinin Plakaya Doğru Akışının Sayısal Yöntemlerle Modellenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. Aralık 2023;23(6):1542-1550. doi:10.35414/akufemubid.1287525
Chicago Alanbel Ersin, Bahar, Derya Karabulut, ve Faruk Örteş. “Katı Zerreler İçeren Bir Akışkan Hüzmesinin Plakaya Doğru Akışının Sayısal Yöntemlerle Modellenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23, sy. 6 (Aralık 2023): 1542-50. https://doi.org/10.35414/akufemubid.1287525.
EndNote Alanbel Ersin B, Karabulut D, Örteş F (01 Aralık 2023) Katı Zerreler İçeren Bir Akışkan Hüzmesinin Plakaya Doğru Akışının Sayısal Yöntemlerle Modellenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23 6 1542–1550.
IEEE B. Alanbel Ersin, D. Karabulut, ve F. Örteş, “Katı Zerreler İçeren Bir Akışkan Hüzmesinin Plakaya Doğru Akışının Sayısal Yöntemlerle Modellenmesi”, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 6, ss. 1542–1550, 2023, doi: 10.35414/akufemubid.1287525.
ISNAD Alanbel Ersin, Bahar vd. “Katı Zerreler İçeren Bir Akışkan Hüzmesinin Plakaya Doğru Akışının Sayısal Yöntemlerle Modellenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 23/6 (Aralık 2023), 1542-1550. https://doi.org/10.35414/akufemubid.1287525.
JAMA Alanbel Ersin B, Karabulut D, Örteş F. Katı Zerreler İçeren Bir Akışkan Hüzmesinin Plakaya Doğru Akışının Sayısal Yöntemlerle Modellenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23:1542–1550.
MLA Alanbel Ersin, Bahar vd. “Katı Zerreler İçeren Bir Akışkan Hüzmesinin Plakaya Doğru Akışının Sayısal Yöntemlerle Modellenmesi”. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 23, sy. 6, 2023, ss. 1542-50, doi:10.35414/akufemubid.1287525.
Vancouver Alanbel Ersin B, Karabulut D, Örteş F. Katı Zerreler İçeren Bir Akışkan Hüzmesinin Plakaya Doğru Akışının Sayısal Yöntemlerle Modellenmesi. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi. 2023;23(6):1542-50.