Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 26 Sayı: 2, 226 - 235, 04.06.2020
https://doi.org/10.15832/ankutbd.492686

Öz

Kaynakça

  • ANSYS (2016). Fluent Theory Guide, Release 17.2, ANSYS, Inc.
  • Bralts VF, Wu IP (1979). Emitter flow variation and uniformity for drip irrigation. ASAE Paper, St Joseph, MI, USA.
  • Cicconi P & Raffaeli R (2009). A Knowledge Based Approach for Affordable Virtual Prototyping:the Drip Emitters Test Case. In: Proceedings of the 19th CIRP Design Conference – Competitive Design, 30-31 March 2009, Cranfield University, UK
  • Dazhuang Y, Peiling Y, Shumei R, Yunkai L & Tingwu X (2007). Numerical study on flow property in dentate path of drip emitters. New Zealand Journal of Agricultural Research 50(5): 705-712
  • Ding C, Lam K P & Feng W (2017). An Evaluation Index for Cross Ventilation Based on CFD Simulations and Ventilation Prediction Model Using Machine Learning algorithms. Procedia Engineering 205(2017) 2948–2955
  • Li Y K, Yang P L, Ren S M & Xu T W (2006). Hydraulic characterizations of tortuous flow in path drip irrigation emitter. Journal of Hydrodynamics (B) 18(4): 449-457
  • Li Y K, Yang P L, Xu T W, Ren S M, Lin X G, Wei R J & Xu H B (2008). CFD and digital particle tracking to assess flow characteristics in the labyrinth flow path of a drip irrigation emitter. Irrigation Science 26:427–438
  • Liu H S, Li Y K, Liu Y Z, Yang P L, Ren S M, Wei R J & Xu H B (2009). Flow characteristics in energy dissipation units of Labyrinth path in the drip irrigation emitters with DPIV technology. Journal of Hydrodynamics 21(6): 137-145
  • Mizyed N & Kruse E G (1989). Emitter discharge evaluation of subsurface trickle irrigation systems. T ASAE 32(4): 1223-1228
  • Munson B R, Young D F & Okiishi T H (2006). Fundamentals of Fluid Mechanics. 6th Edition, J. Wiley and Sons
  • Palau-Salvador G, Arviza-Valverde J & Bralts V (2004). Hydraulic flow behaviour through an in-line emitter labyrinth using CFD techniques. In: Proceedings of the ASAE/CSAE Annual International Meeting, 042252, 1-4 August, Ottawa, Canada
  • Patil S S, Nimbalkar P T & Joshi A (2013) Hydraulic Study, Design & Analysis of Different Geometries of Drip Irrigation Emitter Labyrinth, International Journal of Engineering and Advanced Technology (IJEAT) 2(5):455-462
  • Philipova N, Nikolov N, Pichurov G & Markov D (2009). A mathematical model of drip emitter discharge depending on the geometric parameters of a labyrinth channel. In: 11th National Cong on Theor & App Mech, 2-5 Sept. 2009, Borovets, Bulgaria
  • Versteeg H K & Malalasekera W (1995). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley, New York
  • Von Bernuth R D & Solomon K H (1986). Design principles-emitter construction (Chapter 2). In: Trickle Irrigation for Crop Production (Nakayama, G S and Bucks, DA eds). Elsevier Science Publishers, The Netherlands
  • Wang W, Wang F & Zhao F (2006). Simulation of unsteady flow in labyrinth emitter of drip irrigation system. Computers in Agriculture and Natural Resources, 4th World Congress Conference, ASABE Number 701P0606, 24-26 July, Orlando, Florida
  • Wei Q, Shi Y, Dong W, Lu G & Huang S (2006). Study on hydraulic performance of drip emitters by computational fluid dynamics. Agricultural Water Management 84(12): 130-136
  • Willmott C J & Matsuura K (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research 30: 79–82
  • Wu D, Li Y K, Liu H S, Yang P L, Sun H S & Liu Y Z (2013). Simulation of the flow characteristics of a drip irrigation emitter with Large Eddy Methods. Mathematical and Computer Modelling 58(3-4): 497-506
  • Zhang J, Zhao W, Wei Z, Tang Y & Lu B (2007). Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels. Computer and Electronics in Agriculture 56(2): 120-129
  • Zhang L, Wu P T, Zhu D L & Zheng C (2016). Flow regime and head loss in a drip emitter equipped with a labyrinth channel. Journal of Hydrodynamics 28(4): 610-616

Determination of the Hydraulic Properties of a Flat Type Drip Emitter using Computational Fluid Dynamics

Yıl 2020, Cilt: 26 Sayı: 2, 226 - 235, 04.06.2020
https://doi.org/10.15832/ankutbd.492686

Öz

The objective of this study was to determine the hydraulic properties of a flat type emitter using Computational Fluid Dynamics with different turbulence models and model options. In addition, it is aimed to investigate the effects of the emitter hydraulic properties on the design when the same emitter is used in drip irrigation pipes with different wall thicknesses. The lowest mean percentage deviation between the measured flow rates and the calculated flow rates with turbulence models was found as 0.70% and 0.74% in the SST k- and Stress-Omega RSM turbulence model for the wall thickness of 0.25 mm pipe, respectively. Also, the mean percentage deviation for the laminar turbulence model was found to be -1.01%. The minimum MAE (0.021 L h-1) and RMSE (0.028 L h-1) values were found in the SST k- low-Re corr. turbulence model and the minimum MAPE (1.068%) was found in the laminar turbulence model.

Kaynakça

  • ANSYS (2016). Fluent Theory Guide, Release 17.2, ANSYS, Inc.
  • Bralts VF, Wu IP (1979). Emitter flow variation and uniformity for drip irrigation. ASAE Paper, St Joseph, MI, USA.
  • Cicconi P & Raffaeli R (2009). A Knowledge Based Approach for Affordable Virtual Prototyping:the Drip Emitters Test Case. In: Proceedings of the 19th CIRP Design Conference – Competitive Design, 30-31 March 2009, Cranfield University, UK
  • Dazhuang Y, Peiling Y, Shumei R, Yunkai L & Tingwu X (2007). Numerical study on flow property in dentate path of drip emitters. New Zealand Journal of Agricultural Research 50(5): 705-712
  • Ding C, Lam K P & Feng W (2017). An Evaluation Index for Cross Ventilation Based on CFD Simulations and Ventilation Prediction Model Using Machine Learning algorithms. Procedia Engineering 205(2017) 2948–2955
  • Li Y K, Yang P L, Ren S M & Xu T W (2006). Hydraulic characterizations of tortuous flow in path drip irrigation emitter. Journal of Hydrodynamics (B) 18(4): 449-457
  • Li Y K, Yang P L, Xu T W, Ren S M, Lin X G, Wei R J & Xu H B (2008). CFD and digital particle tracking to assess flow characteristics in the labyrinth flow path of a drip irrigation emitter. Irrigation Science 26:427–438
  • Liu H S, Li Y K, Liu Y Z, Yang P L, Ren S M, Wei R J & Xu H B (2009). Flow characteristics in energy dissipation units of Labyrinth path in the drip irrigation emitters with DPIV technology. Journal of Hydrodynamics 21(6): 137-145
  • Mizyed N & Kruse E G (1989). Emitter discharge evaluation of subsurface trickle irrigation systems. T ASAE 32(4): 1223-1228
  • Munson B R, Young D F & Okiishi T H (2006). Fundamentals of Fluid Mechanics. 6th Edition, J. Wiley and Sons
  • Palau-Salvador G, Arviza-Valverde J & Bralts V (2004). Hydraulic flow behaviour through an in-line emitter labyrinth using CFD techniques. In: Proceedings of the ASAE/CSAE Annual International Meeting, 042252, 1-4 August, Ottawa, Canada
  • Patil S S, Nimbalkar P T & Joshi A (2013) Hydraulic Study, Design & Analysis of Different Geometries of Drip Irrigation Emitter Labyrinth, International Journal of Engineering and Advanced Technology (IJEAT) 2(5):455-462
  • Philipova N, Nikolov N, Pichurov G & Markov D (2009). A mathematical model of drip emitter discharge depending on the geometric parameters of a labyrinth channel. In: 11th National Cong on Theor & App Mech, 2-5 Sept. 2009, Borovets, Bulgaria
  • Versteeg H K & Malalasekera W (1995). An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley, New York
  • Von Bernuth R D & Solomon K H (1986). Design principles-emitter construction (Chapter 2). In: Trickle Irrigation for Crop Production (Nakayama, G S and Bucks, DA eds). Elsevier Science Publishers, The Netherlands
  • Wang W, Wang F & Zhao F (2006). Simulation of unsteady flow in labyrinth emitter of drip irrigation system. Computers in Agriculture and Natural Resources, 4th World Congress Conference, ASABE Number 701P0606, 24-26 July, Orlando, Florida
  • Wei Q, Shi Y, Dong W, Lu G & Huang S (2006). Study on hydraulic performance of drip emitters by computational fluid dynamics. Agricultural Water Management 84(12): 130-136
  • Willmott C J & Matsuura K (2005). Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research 30: 79–82
  • Wu D, Li Y K, Liu H S, Yang P L, Sun H S & Liu Y Z (2013). Simulation of the flow characteristics of a drip irrigation emitter with Large Eddy Methods. Mathematical and Computer Modelling 58(3-4): 497-506
  • Zhang J, Zhao W, Wei Z, Tang Y & Lu B (2007). Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels. Computer and Electronics in Agriculture 56(2): 120-129
  • Zhang L, Wu P T, Zhu D L & Zheng C (2016). Flow regime and head loss in a drip emitter equipped with a labyrinth channel. Journal of Hydrodynamics 28(4): 610-616
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Vedat Demir 0000-0001-8341-9672

Hüseyin Yürdem 0000-0003-2711-2697

Arzu Yazgı 0000-0003-0141-8882

Tuncay Günhan 0000-0003-4462-2410

Yayımlanma Tarihi 4 Haziran 2020
Gönderilme Tarihi 5 Aralık 2018
Kabul Tarihi 4 Nisan 2019
Yayımlandığı Sayı Yıl 2020 Cilt: 26 Sayı: 2

Kaynak Göster

APA Demir, V., Yürdem, H., Yazgı, A., Günhan, T. (2020). Determination of the Hydraulic Properties of a Flat Type Drip Emitter using Computational Fluid Dynamics. Journal of Agricultural Sciences, 26(2), 226-235. https://doi.org/10.15832/ankutbd.492686

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).