Research Article
BibTex RIS Cite

Determination of Environmental Impacts using Life Cycle Assessment of Plants Grown for Bioenergy: Example of Sorghum x Sudan Grass Hybrid

Year 2024, Volume: 30 Issue: 2, 263 - 272, 26.03.2024
https://doi.org/10.15832/ankutbd.1275090

Abstract

Renewable energy sources are the most effective and cheapest method for combating climate change. Biomass, which is one of the renewable energy sources, is also one of the raw materials for biofuels. Sorghum x Sudan grass hybrid, which is drought tolerant and has a short vegetation period, is a biomass source. This study was carried out to determine the ethanol yield of sorghum x Sudan grass hybrid plants grown in an area with a semi-humid climate and to determine the environmental impacts of biomass. Environmental impacts were assessed using the life cycle assessment method. Environmental impact categories are divided into 11 categories according to the CML-IA Baseline model. As a result, the biomass yield was 49888 kg ha-1 and the ethanol yield was 1674.1 l ha-1. According to the life cycle impact category of sorghum x Sudan grass hybrid biomass production, the highest environmental impact was 79.21%, causing marine aquatic ecotoxicity. According to the life cycle interpretation, it caused a global effect with a rate of 83.87%. In addition, the global warming value was calculated as 0.195 kg CO2-eq kgbiomass-1 (9728.16 kg CO2-eq ha-1). The agricultural phases with the most negative impact on the environment are irrigation and fertilization.

References

  • Batog J, Frankowski J, Wawro A & Lacka A (2020). Bioethanol production from biomass of selected sorghum varieties cultivated as main and second crop. Energies 13(23): 6291 https://doi.org/10.3390/en13236291
  • Boone L, Van Linden V, De Meester S, Vandecasteele B, Muylle H, Roldan-Ruiz I, Nemecek T & Dewulf F (2016). Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of The Total Environment (553): 551-564 https://doi.org/10.1016/j.scitotenv.2016.02.089
  • Bunphan D, Jaisil P, Sanitchon J, Knoll J & Anderson W (2015). Estimation methods and parameter assessment for ethanol yields from total soluble solids of sweet sorghum. Industrial Crops and Products (63): 349-356 https://doi.org/10.1016/j.indcrop.2014.10.007
  • Christoforou E, Fokaides P A, Koroneos C J & Lucia R (2016). Life cycle assessment of first-generation energy crops in arid isolated island states: The case of Cyprus. Sustainable Energy Technologies and Assessments (14): 1-8 https://doi.org/10.1016/j.seta.2016.01.005
  • Economou F, Papamichael I, Voukkali I, Loizia P, Klontza E, Lekkas, D F & Zorpas A A (2023). Life cycle assessment of potato production in insular communities under subtropical climatic conditions. Case Studies in Chemical and Environmental Engineering, 100419. https://doi.org/10.1016/j.cscee.2023.100419
  • Eren Ö & Öztürk H H (2021). Determination of environmental impacts with life cycle assessment of sweet sorghum (sorghum bicolor (L)) biomass. European Journal of Science and Technology (22) 195-203 https://doi.org/10.31590/ejosat.852286
  • Fan J, Liu C, Xie J, Han L, Zhang C, Guo D, Niu J, Jin H & McConkey B G (2022). Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. Int. J. Environ. Res. Public Health, 19, 9817.https://doi.org/10.3390/ijerph19169817
  • Frank M, Laginess T & Schöneboom J (2020). Social life cycle assessment in agricultural systems – U.S. corn production as a case study. In: Traverso M., Petti L., Zamagni A. (eds) Perspectives on Social LCA. Springer Briefs in Environmental Science. Springer, Cham.
  • Gilio L & Moraes M A F D (2016). Sugarcane industry’s socioeconomic impact in São Paulo, Brazil: A spatial dynamic panel approach. Energy Economics (58): 27–37 https://doi.org/10.1016/j.eneco.2016.06.005
  • Guiying L, Weibin G, Hicks A & Chapman K R (2003). A training manual for sweet sorghum, development of sweet sorghum for grain, sugar, feed, fiber, and valueadded by-products, in the arid, saline-alkaline regions of China. FAO - TCP/CPR/0066
  • IEA (International Energy Agency) (2021). https://www.iea.org/reports/world-energy-balances-overview#world (Date of access: 01.12.2022)
  • Moraes M A F D, Piedade Bachi M R & Caldarelli C E (2016). Accelerated growth of the sugarcane, sugar, and ethanol sectors in Brazil (2000–2008): effects on municipal gross domestic product per capita in the south-central region. Biomass Bioenergy (91): 16–125 https://doi.org/10.1016/j.biombioe.2016.05.004
  • Rao S S, Patil J V. Umakanth A V, Mishra J S, Ratnavathi C V, Shyam Prasad G & Dayakar Rao B (2013). Comparative performance of sweet sorghum hybrids and open pollinated varieties for millable stalk yield, biomass, sugar quality traits, grain yield and bioethanol production in tropical Indian condition. Sugar Technology (15): 250-257 https://doi.org/10.1007/s12355-013-0224-y
  • Rutto L K, Xu Y, Brandt M, Ren S & Kering M K (2013). Juice, ethanol and grain yield potential of five sweet sorghum (Sorghum bicolor (L.) Moench) cultivars. Journal of Sustainable Bioenergy Systems 3(2): 113-118 http://dx.doi.org/10.4236/jsbs.2013.32016
  • Sawargaonkar G L, Patil M D, Wani S P, Pavani E, Reddy B V S R & Marimuthu S (2013). Nitrogen response and water use efficiency of sweet sorghum. Field Crops Research (149): 245-251 https://doi.org/10.1016/j.fcr.2013.05.009
  • Smith G, Bagby M, Lewellan R, Doney D, Moore P, Hills F, Camp-bell L, Hogaboam G, Coe G & Freeman K (1987). Evaluation of sweet sorghum for fermentable sugar production potential. Crop Science (27): 788-793 https://doi.org/10.2135/cropsci1987.0011183X002700040037x
  • Stylianou M, Papamichael I, Voukkali I, Tsangas M, Omirou M, Ioannides IM & Zorpas AA (2023). LCA of Barley Production: A Case Study from Cyprus. Int. J. Environ. Res. Public Health, 20(3): 2417. https://doi.org/10.3390/ijerph20032417
  • Sutter J & Jungbluth N (2007). Sweet sorghum, production in China. Life Cycle Inventories of Bioenergy, Ecoinvent Report No: 17, pp. 162-173
  • Vatsanidou A, Kavalaris C, Fountas S, Katsoulas N & Gemtos T (2020). A life cycle assessment of biomass production from energy crops in crop rotation using different tillage system. Sustainability (12): 6978 https://doi.org/10.3390/su12176978
  • Wang M, Chen Y, Xia X, Li J & Liu J (2014). Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis. Bioresource Technology (163): 74-81 https://doi.org/10.1016/j.biortech.2014.04.014
  • Wowra K, Zeller V & Schebek L (2021). Nitrogen in Life Cycle Assessment (LCA) of agricultural crop production systems: Comparative analysis of regionalization approaches. Science of the Total Environment, 763, art. no. 143009. https://doi.org/10.1016/j.scitotenv.2020.143009
  • Zhang W, He X, Zhang Z, Gong S, Zhang Q, Zhang W, Liu D, Zou C & Chen X (2018). Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China. Biosystems Engineering 167: 75-86 https://doi.org/10.1016/j.biosystemseng.2017.12.008
Year 2024, Volume: 30 Issue: 2, 263 - 272, 26.03.2024
https://doi.org/10.15832/ankutbd.1275090

Abstract

References

  • Batog J, Frankowski J, Wawro A & Lacka A (2020). Bioethanol production from biomass of selected sorghum varieties cultivated as main and second crop. Energies 13(23): 6291 https://doi.org/10.3390/en13236291
  • Boone L, Van Linden V, De Meester S, Vandecasteele B, Muylle H, Roldan-Ruiz I, Nemecek T & Dewulf F (2016). Environmental life cycle assessment of grain maize production: An analysis of factors causing variability. Science of The Total Environment (553): 551-564 https://doi.org/10.1016/j.scitotenv.2016.02.089
  • Bunphan D, Jaisil P, Sanitchon J, Knoll J & Anderson W (2015). Estimation methods and parameter assessment for ethanol yields from total soluble solids of sweet sorghum. Industrial Crops and Products (63): 349-356 https://doi.org/10.1016/j.indcrop.2014.10.007
  • Christoforou E, Fokaides P A, Koroneos C J & Lucia R (2016). Life cycle assessment of first-generation energy crops in arid isolated island states: The case of Cyprus. Sustainable Energy Technologies and Assessments (14): 1-8 https://doi.org/10.1016/j.seta.2016.01.005
  • Economou F, Papamichael I, Voukkali I, Loizia P, Klontza E, Lekkas, D F & Zorpas A A (2023). Life cycle assessment of potato production in insular communities under subtropical climatic conditions. Case Studies in Chemical and Environmental Engineering, 100419. https://doi.org/10.1016/j.cscee.2023.100419
  • Eren Ö & Öztürk H H (2021). Determination of environmental impacts with life cycle assessment of sweet sorghum (sorghum bicolor (L)) biomass. European Journal of Science and Technology (22) 195-203 https://doi.org/10.31590/ejosat.852286
  • Fan J, Liu C, Xie J, Han L, Zhang C, Guo D, Niu J, Jin H & McConkey B G (2022). Life Cycle Assessment on Agricultural Production: A Mini Review on Methodology, Application, and Challenges. Int. J. Environ. Res. Public Health, 19, 9817.https://doi.org/10.3390/ijerph19169817
  • Frank M, Laginess T & Schöneboom J (2020). Social life cycle assessment in agricultural systems – U.S. corn production as a case study. In: Traverso M., Petti L., Zamagni A. (eds) Perspectives on Social LCA. Springer Briefs in Environmental Science. Springer, Cham.
  • Gilio L & Moraes M A F D (2016). Sugarcane industry’s socioeconomic impact in São Paulo, Brazil: A spatial dynamic panel approach. Energy Economics (58): 27–37 https://doi.org/10.1016/j.eneco.2016.06.005
  • Guiying L, Weibin G, Hicks A & Chapman K R (2003). A training manual for sweet sorghum, development of sweet sorghum for grain, sugar, feed, fiber, and valueadded by-products, in the arid, saline-alkaline regions of China. FAO - TCP/CPR/0066
  • IEA (International Energy Agency) (2021). https://www.iea.org/reports/world-energy-balances-overview#world (Date of access: 01.12.2022)
  • Moraes M A F D, Piedade Bachi M R & Caldarelli C E (2016). Accelerated growth of the sugarcane, sugar, and ethanol sectors in Brazil (2000–2008): effects on municipal gross domestic product per capita in the south-central region. Biomass Bioenergy (91): 16–125 https://doi.org/10.1016/j.biombioe.2016.05.004
  • Rao S S, Patil J V. Umakanth A V, Mishra J S, Ratnavathi C V, Shyam Prasad G & Dayakar Rao B (2013). Comparative performance of sweet sorghum hybrids and open pollinated varieties for millable stalk yield, biomass, sugar quality traits, grain yield and bioethanol production in tropical Indian condition. Sugar Technology (15): 250-257 https://doi.org/10.1007/s12355-013-0224-y
  • Rutto L K, Xu Y, Brandt M, Ren S & Kering M K (2013). Juice, ethanol and grain yield potential of five sweet sorghum (Sorghum bicolor (L.) Moench) cultivars. Journal of Sustainable Bioenergy Systems 3(2): 113-118 http://dx.doi.org/10.4236/jsbs.2013.32016
  • Sawargaonkar G L, Patil M D, Wani S P, Pavani E, Reddy B V S R & Marimuthu S (2013). Nitrogen response and water use efficiency of sweet sorghum. Field Crops Research (149): 245-251 https://doi.org/10.1016/j.fcr.2013.05.009
  • Smith G, Bagby M, Lewellan R, Doney D, Moore P, Hills F, Camp-bell L, Hogaboam G, Coe G & Freeman K (1987). Evaluation of sweet sorghum for fermentable sugar production potential. Crop Science (27): 788-793 https://doi.org/10.2135/cropsci1987.0011183X002700040037x
  • Stylianou M, Papamichael I, Voukkali I, Tsangas M, Omirou M, Ioannides IM & Zorpas AA (2023). LCA of Barley Production: A Case Study from Cyprus. Int. J. Environ. Res. Public Health, 20(3): 2417. https://doi.org/10.3390/ijerph20032417
  • Sutter J & Jungbluth N (2007). Sweet sorghum, production in China. Life Cycle Inventories of Bioenergy, Ecoinvent Report No: 17, pp. 162-173
  • Vatsanidou A, Kavalaris C, Fountas S, Katsoulas N & Gemtos T (2020). A life cycle assessment of biomass production from energy crops in crop rotation using different tillage system. Sustainability (12): 6978 https://doi.org/10.3390/su12176978
  • Wang M, Chen Y, Xia X, Li J & Liu J (2014). Energy efficiency and environmental performance of bioethanol production from sweet sorghum stem based on life cycle analysis. Bioresource Technology (163): 74-81 https://doi.org/10.1016/j.biortech.2014.04.014
  • Wowra K, Zeller V & Schebek L (2021). Nitrogen in Life Cycle Assessment (LCA) of agricultural crop production systems: Comparative analysis of regionalization approaches. Science of the Total Environment, 763, art. no. 143009. https://doi.org/10.1016/j.scitotenv.2020.143009
  • Zhang W, He X, Zhang Z, Gong S, Zhang Q, Zhang W, Liu D, Zou C & Chen X (2018). Carbon footprint assessment for irrigated and rainfed maize (Zea mays L.) production on the Loess Plateau of China. Biosystems Engineering 167: 75-86 https://doi.org/10.1016/j.biosystemseng.2017.12.008
There are 22 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Makaleler
Authors

Halit Tutar 0000-0002-9341-3503

Kağan Kökten 0000-0001-5403-5629

Ömer Eren 0000-0003-4578-3187

Publication Date March 26, 2024
Submission Date April 1, 2023
Acceptance Date October 24, 2023
Published in Issue Year 2024 Volume: 30 Issue: 2

Cite

APA Tutar, H., Kökten, K., & Eren, Ö. (2024). Determination of Environmental Impacts using Life Cycle Assessment of Plants Grown for Bioenergy: Example of Sorghum x Sudan Grass Hybrid. Journal of Agricultural Sciences, 30(2), 263-272. https://doi.org/10.15832/ankutbd.1275090

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).