Research Article
BibTex RIS Cite

Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum species

Year 2025, Volume: 31 Issue: 2, 319 - 331, 25.03.2025

Abstract

The Hypericum genus is significant both medically and economically due to its bioactive compounds. This study utilized plant biotechnology techniques to develop an efficient and reliable adventitious shoot regeneration and suitable cell suspension culture system for various Hypericum species, including Hypericum perforatum L., Hypericum leptophyllum Hochst, Hypericum heterophyllum L., Hypericum humifusum L., and Hypericum athoum Boiss. & Orph. High frequency of callus induction using leaf explants on MS medium containing 1.0 mg/L BAP and 0.1 mg/L 2,4-D for Hypericum perforatum L. (100%), Hypericum humifusum L. (90%), and Hypericum leptophyllum Hochst (90%). The best shoot regeneration was also achieved in Hypericum humifusum L. (86.3%), Hypericum perforatum L. (73.0%), Hypericum leptophyllum Hochst (45.67%) and Hypericum athoum Boiss. & Orph. (18.33%) on MS medium with 1.0 mg/L BAP and 0.1 mg/L 2,4-D. Calli clusters obtained on callus induction medium were cultured on cell suspension culture MS basal media with B5 vitamins containing 2 mg/L glycine, 1 mg/L 2,4-D, 0.1 mg/L KIN, and 0.1 mg/L BAP. The friable calli developed in the suspension culture and plated on the medium. The proembryogenic structures formed turned to embryonic structures. These globular embryos further transformed into heart and cotyledonary stage and germinated. The maximum number of shoot/callus or percentage of germination of somatic embryo were respectively recorded for H. perforatum L. (15.37/callus), H. leptophyllum Hochst (6.9/callus), H. heterophyllum L. (9.6/callus), H. humifusum L. (16.8/callus) and H. athoum Boiss. & Orph. (11.7/callus). H. perforatum L. and H. humifusum L. showed the best shoot regeneration capacity as recorded in adventitious shoot regeneration studies. The plants were acclimatized with 85-100 % survival rat, H. perforatum and H. humifusum L. had also the highest survival rate (100%) as having regeneration capacity.

Ethical Statement

Not need to the ethics committee approval

Supporting Institution

Slovak Academic Information Agency / Slovak Republic.

Thanks

Thankful to Inst.of Plant Gen. and Bio. Plant Sci. and Biodiv. Center, Slovak Academy of Sci. Nitra, Slovak Republic for providing facility and supporting the present research work. Distinguished thanks are due to Prof. Dr. Eva Čellárová (UPJS, Fac. of Sci. Inst. of Bio. and Eco. Dept. of Gen. Košice-Slovak Republic) for their kindly gift of Hypericum humifusum and Hypericum athoum seeds.

References

  • Afsharzadeh N, Azizi M & Samiei L (2021). Medium optimization for callus induction, shoot regeneration and rooting of Hypericum perforatum from stem and leaf explants. Journal of Horticulture Science 34:1-3 https://doi.org/10.22067/jhs.2021.60331.0
  • Alahmad A, Feldhoff A, Bigall N C, Rusch P, Scheper T & Walter J G (2021). Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities Nanomaterials 11(2): 487 https://doi.org/10.3390/nano11020487
  • Al-Atrakchii A O A, Yousif H H & Al-Barwari A O M (2019). Effect of altitude and nitrogen fertilization on some vegetative and flowering parameters and essential oil percentage of lavender plant (Lavandula angustifolia). Kirkuk University Journal For Agricultural Sciences 10(2): 40-47 http://doi.org/ 10.58928/ku19.10205
  • Abdulkareem A A, Ghaffoori A T & Alsabte A A (2024). In vitro propagation of date Palm using bioreactor technology. Kirkuk University Journal for Agricultural Sciences 15(1): 98-106 http://doi.org/ 10.58928/ku24.15110
  • Ayan A K & Cirak C (2006). In vitro Multiplication of Hypericum heterophyllum, an Endemic Turkish species. American Journal of Plant Physiology 1(1): 76-81 https://doi.org/ 10.3923/ajpp.2006.76.81
  • Ayan A, Cirak C, Kevseroglu K & Sokmen A (2005). Effects of explant types and different concentrations of sucrose and phytohormones on plant regeneration and hypericin content in Hypericum perforatum L. Turkish Journal of Agriculture and Forestry 29(3): 197-204
  • Bais H P, Walker T S, Mcgrew J J & Vivanco J M (2002). factors affecting growth of cell suspension cultures of Hypericum perforatum L. (st. john’s wort) and production of hypericin. In Vitro Cellular & Developmental Biology-Plant 38: 58–65 https://doi.org/10.1079/IVP2001253
  • Barnes J, Anderson L A & Phillipson J D (2001). St John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. Journal of Pharm Pharmacology 53(5): 583-600 https://doi.org/10.1211/0022357011775910
  • Banerjee A, Bandyopadhyay S & Raychaudhuri S S (2012). In vitro regeneration of Hypericum perforatum L. using thidiazuron and analysis of genetic stability of regenerants. Indian Journal Biotechnology 11: 92–98
  • Behera S S, Mishra P, Samal M, Mohapatra D, Monalisa K & Naik K S (2023). Recent advances in tissue culture and secondary metabolite production in Hypericum perforatum L.. Plant Cell, Tissue and Organ Culture 154: 13–28 https://doi.org/10.1007/s11240-023-02525-3
  • Buter B, Orlacchio C, Soldati A & Berger K (1998). Significance of genetic and environmental aspects in the field cultivation of Hypericum perforatum. Planta Medica. 64(5): 431-437 https://doi.org/10.1055/s-2006-957475
  • Cellarova E, Kimakova K & Brutovska R (1992). Multiple shoot formation in Hypericum perforatum L. and variability of R0. Engineering 12(6): 445-452 https://doi.org/10.1002/abio.370120602Citations
  • Ciccarelli D, Andreucci A C & Pagni A M (2001). Translucent glands and secretory canals in Hypericum perforatum L. (Hypericaceae): morphological, anatomical and histochemical studies during the course of ontogenesis. Annals of Botany 88(4): 637-644 https://doi.org/10.1006/anbo.2001.1514
  • Coste A, Pop C, Halmagyi A & Butiuc-Keul A (2021). Secondary metabolites in shoot cultures of Hypericum. In: Ramawat K G, Ekiert H M & Goyal S (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Springer, Cham, pp 273–307
  • Coste A, Vlase L, Halmagyi A, Deliu C & Coldea G (2011). Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell, Tissue and Organ Culture 106: 279–288 https://doi.org/10.1007/s11240-011-9919-5
  • Crockett S L & Robson N K (2011). Taxonomy and chemotaxonomy of the genus Hypericum. Medicinal and Aromatic Plant Science and Biotechnology 5(Special Issue 1): 1-13
  • Dall'Agnol R, Ferraz A, Bernardi AP, Albring D, Nör C, Sarmento L, Lamb L, Hass M, von Poser G & Schapoval E E (2003). Antimicrobial activity of some Hypericum species. Phytomedicine 10(6-7): 511-516 https://doi.org/ 10.1078/094471103322331476
  • Dias A C P, Seabra R M, Andrade P B, Ferreres F & Fernandes-Ferreira M (2001). Xanthone production in calli and suspended cells of Hypericum perforatum. Journal of Plant Physiology 158(7): 821-827 https://doi.org/10.1078/0176-1617-00195
  • Dias A C P, Seabra R M, Andrade P B, Ferreres F & Fernandes-Ferreira M (2000). Xanthone biosynthesis and accumulation in calli and suspended cells of Hypericum androsaemum. Plant Science 150(1): 93–101 https://doi.org/10.1016/S0168-9452(99)00178-8
  • Eibl R, Meier P, Stutz I, Schildberger D, Huhn T & Eibl D (2018). Plant cell culture technology in the cosmetics and food industries: current state and future trends. Applied Microbiology and Biotechnology 102(20): 8661-8675 https://doi.org/10.1007/s00253-018-9279-8
  • Faizy WS, Toma RS & Tamer YS (2022). In vitro propagation of Pyracantha coccinea as affected by growth regulators and different carbon sources. Kirkuk University Journal for Agricultural Sciences 13(4): 244-252 http://doi.org/10.58928/KU22.13421
  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagège D, Cour tois D & Joseph C (2013). The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture 113(1): 25-39 https://doi.org/ 10.1007/s11240-012-0248-0
  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C & Hag`ege D (2007). Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell, Tissue and Organ Culture 89: 1– 13 https://doi.org/10.1007/s11240-007-9203-x
  • Gamborg O L, Miller R A & Ojima K (1968). Nutrient requirements of suspension cultures soybean root cells. Experimental Cell Research 50(1): 151-158 https://doi.org/ 10.1016/0014-4827(68)90403-5
  • Greeson J, Sanford B & Monti D A (2001). St. John’s wort (Hypericum perforatum L.) A review of the current pharmacological, toxicological and clinical literature. Psychopharmacology 153(4): 402-214 https://doi.org/10.1007/s002130000625
  • Griffith T N, Varela-Nallar L, Dinamarca M C & Inestrosa N C (2010). Neurobiological effects of Hyperforin and its potential in Alzheimer's disease therapy. Current Medicinal Chemistry 17(5): 391-406 https://doi.org/10.2174/092986710790226156
  • Gubser G, Vollenweider S, Eibl D & Eibl R (2021). Food ingredients and food made with plant cell and tissue cultures: State-of-the art and future trends. Engineering in Life Scince 21: 87–98 https://doi.org/10.1002/elsc.202000077
  • Guedes R C & Eriksson L A (2005). Theoretical Study of Hypericin. Journal of Photochemistry and Photobiology A: Chemistry 172(3): 293-299 https://doi.org/10.1016/j.jphotochem
  • Henzelyová J & Čellárová E (2018). Modulation of naphthodianthrone biosynthesis in hairy root-derived Hypericum tomentosum regenerants. Acta Physiologiae Plantarum 40: 82 https://doi.org/10.1007/s11738-018-2664-1
  • Hong D, Yin F, Hu L H & Lu P (2004). Sulfonated xanthones from Hypericum sampsonii, Phytochemistry, 65(18): 2595-2598 https://doi.org/ 10.1016/j.phytochem
  • Hussain M J, Abbas Y, Nazli N, Fatima S, Drouet S, Hano C & Abbasi B H (2022). Root cultures, a boon for the production of valuable compounds: A comparative review. Plants 11(3): 439 https://doi.org/ 10.3390/plants11030439. PMID: 35161423
  • Jendželovská Z, Jendželovský R, Kuchárová B & Fedoročko P (2016). Hypericin in the light and in the dark: two sides of the same coin. Frontiers in Plant Science 7: 560 https://doi.org/10.3389/fpls.2016.00560
  • Karakaş Ö, Özen H Ç & Onay A (2015). Determination of hypericin con tent in callus and cell suspension cultures of Hypericum triquetrifolium Turra. Advances in Zoology and Botany 3(4): 184-189 https://doi.org/10.13189/azb.2015.030404
  • Karakaş O, Toker Z, Tilkat E, Ozen H C & Onay A (2009). Effects of different concentrations of benzylaminopurine on shoot regenera tion and hypericin content in Hypericum Triquetrifolium Turra. Natural Product Research 23(16): 1459-1465 https://doi.org/10.1080/14786410701664528
  • Karppinen K, Hokkanen J, Tolonen A, Mattila S & Hohtola A (2007). Biosynthesis of hyperforin and adhyperforin from amino acid pre cursors in shoot cultures of Hypericum perforatum. Phytochemistry 68(7): 1038-1045 https://doi: 10.1016/j.phytochem.2007.01.001
  • Karppinen K, György Z, Kauppinen M, Tolonen A, Jalonen J, Neubauer P, Hohtola A & Häggman H (2006). In vitro propagation of Hypericum perforatum L. and accumulation of hypercins, pseudohypericins and phloroglucinols. Propagation of Ornamental Plants 6(4): 170-179
  • Kirakosyan A, Hayashi H, Inoue K, Charchoglyan A & Vardapetyan H (2000). Stimulation of the production of hypericins by man nan in Hypericum perforatum shoot cultures. Phytochemistry 53(3): 345-348. https://doi.org/ 10.1016/s0031-9422(99)00496-3
  • Klingauf P, Beuerle T, Mellenthin A, El-Moghazy S A M, Boubakir Z & Beerhues L (2005). Biosynthesis of the hyperforin skeleton in Hypericum calycinum cell cultures. Phytochemistry 66(2): 139–145 https://doi.org/10.1016
  • Kong E Y Y, Biddle J, Foale M & Adkins S W (2020). Cell suspension culture: a potential in vitro culture method for clonal propagation of coconut plantlets via somatic embryogenesis. Industrial Crops and Products 147: 112125 https://doi.org/10.1016
  • Koperdáková J, Katkovèınová Z, Košuth J, Giovannini A & Cèllárová E (2009). Morphogenetic response to plant growth regulators in transformed and untransformed Hypericum perforatum L. clones. Acta Biologica Cracovıensia Series Botanica 51(1): 61–70
  • Kruszka D, Selvakesavan R K, Kachlicki P & Franklin G (2022). Untargeted metabolomics analysis reveals the elicitation of important secondary metabolites upon treatment with various metal and metal oxide nanoparticles in Hypericum perforatum L. cell suspension cultures. Industrial Crops and Products 178: 114561 https://doi.org/10.1016/j.indcrop
  • Kwiecień I, Szydlowska A, Kawka B, Beerhues L & Ekiert H (2015). Accumulation of biologically active phenolic acids in agitated shoot cultures of three Hypericum perforatum L. cultivars ‘Elixir’, ‘Helos’, and ‘Topas’. Plant Cell, Tissue and Organ Culture 123: 273–281 https://doi.org/10.1007/s11240-015-0830-3
  • Mañero F J, Algar E, Gómez M S M, Sierra M D S & Solano B R (2012). Elicitation of secondary metabolism in Hypericum perforatum by rhizosphere bacteria and derived elicitors in seedlings and shoot cultures. Pharmaceutical Biology 50(10): 1201-1209 https://doi.org/ 10.3109/13880209.2012.664150
  • Mccoy J & Camper N D (2002). Development of a micropropagation protocol for St. John’ s wort (Hypericum perforatum L.). Horticultural Science 37(6): 978–980 https://doi.org/10.21273/HORTSCI.37.6.978
  • Medina M A, Martínez-Poveda B, Amores-Sánchez M I & Quesada A R (2006). Hyperforin: More than an antidepressant bioactive compound? Life Sciences 79(2): 105-111 https://doi.org/10.1016/j.lfs
  • Mikhovich Z E, Echishvili E E, Portnyagina N V & Skrotskaya O V (2021). Peculiarities of Hypericum perforatum L. reproduction in vitro culture and development of plants in the open field. Samara Journal of Science 10(4): 79–86 https://doi.org/10.17816/snv2021104112
  • Moura M (1998). Conservation of Hypericum foliosum Aiton, an endemic azorean species, by micropropagation. In Vitro Cellular & Developmental Biology-Plant 34(3): 244-248
  • Murashige T & Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology 15: 473- 497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Murthy H N, Joseph K S, Paek K Y & Park S Y (2023). Anthraquinone production from cell and organ cultures of Rubia species: an overview. Metabolites 13(1):39 https://doi.org/ 10.3390/metabo13010039
  • Mulinacci M, Giaccherini C, Santamaria A R, Caniato R, Ferrari F, Valletta A, Vincieri F F & Pasqua G (2008). Anthocyanins and xanthones in the calli and regenerated shoots of Hypericum perforatum var angustifolium (sin. Fröhlich) Borkh. Plant Physiology and Biochemistry 46(4): 414-420 https://doi.org/10.1016/j.plaphy
  • Mustafa N R, Winter W D, Iren F V & Verpoorte R (2011). Initiation, growth and cryopreservation of plant cell suspension cultures. Nature Protocols 6: 715–742 https://doi.org/10.1038/nprot.2010.144
Year 2025, Volume: 31 Issue: 2, 319 - 331, 25.03.2025

Abstract

References

  • Afsharzadeh N, Azizi M & Samiei L (2021). Medium optimization for callus induction, shoot regeneration and rooting of Hypericum perforatum from stem and leaf explants. Journal of Horticulture Science 34:1-3 https://doi.org/10.22067/jhs.2021.60331.0
  • Alahmad A, Feldhoff A, Bigall N C, Rusch P, Scheper T & Walter J G (2021). Hypericum perforatum L.-mediated green synthesis of silver nanoparticles exhibiting antioxidant and anticancer activities Nanomaterials 11(2): 487 https://doi.org/10.3390/nano11020487
  • Al-Atrakchii A O A, Yousif H H & Al-Barwari A O M (2019). Effect of altitude and nitrogen fertilization on some vegetative and flowering parameters and essential oil percentage of lavender plant (Lavandula angustifolia). Kirkuk University Journal For Agricultural Sciences 10(2): 40-47 http://doi.org/ 10.58928/ku19.10205
  • Abdulkareem A A, Ghaffoori A T & Alsabte A A (2024). In vitro propagation of date Palm using bioreactor technology. Kirkuk University Journal for Agricultural Sciences 15(1): 98-106 http://doi.org/ 10.58928/ku24.15110
  • Ayan A K & Cirak C (2006). In vitro Multiplication of Hypericum heterophyllum, an Endemic Turkish species. American Journal of Plant Physiology 1(1): 76-81 https://doi.org/ 10.3923/ajpp.2006.76.81
  • Ayan A, Cirak C, Kevseroglu K & Sokmen A (2005). Effects of explant types and different concentrations of sucrose and phytohormones on plant regeneration and hypericin content in Hypericum perforatum L. Turkish Journal of Agriculture and Forestry 29(3): 197-204
  • Bais H P, Walker T S, Mcgrew J J & Vivanco J M (2002). factors affecting growth of cell suspension cultures of Hypericum perforatum L. (st. john’s wort) and production of hypericin. In Vitro Cellular & Developmental Biology-Plant 38: 58–65 https://doi.org/10.1079/IVP2001253
  • Barnes J, Anderson L A & Phillipson J D (2001). St John’s wort (Hypericum perforatum L.): A review of its chemistry, pharmacology and clinical properties. Journal of Pharm Pharmacology 53(5): 583-600 https://doi.org/10.1211/0022357011775910
  • Banerjee A, Bandyopadhyay S & Raychaudhuri S S (2012). In vitro regeneration of Hypericum perforatum L. using thidiazuron and analysis of genetic stability of regenerants. Indian Journal Biotechnology 11: 92–98
  • Behera S S, Mishra P, Samal M, Mohapatra D, Monalisa K & Naik K S (2023). Recent advances in tissue culture and secondary metabolite production in Hypericum perforatum L.. Plant Cell, Tissue and Organ Culture 154: 13–28 https://doi.org/10.1007/s11240-023-02525-3
  • Buter B, Orlacchio C, Soldati A & Berger K (1998). Significance of genetic and environmental aspects in the field cultivation of Hypericum perforatum. Planta Medica. 64(5): 431-437 https://doi.org/10.1055/s-2006-957475
  • Cellarova E, Kimakova K & Brutovska R (1992). Multiple shoot formation in Hypericum perforatum L. and variability of R0. Engineering 12(6): 445-452 https://doi.org/10.1002/abio.370120602Citations
  • Ciccarelli D, Andreucci A C & Pagni A M (2001). Translucent glands and secretory canals in Hypericum perforatum L. (Hypericaceae): morphological, anatomical and histochemical studies during the course of ontogenesis. Annals of Botany 88(4): 637-644 https://doi.org/10.1006/anbo.2001.1514
  • Coste A, Pop C, Halmagyi A & Butiuc-Keul A (2021). Secondary metabolites in shoot cultures of Hypericum. In: Ramawat K G, Ekiert H M & Goyal S (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Springer, Cham, pp 273–307
  • Coste A, Vlase L, Halmagyi A, Deliu C & Coldea G (2011). Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell, Tissue and Organ Culture 106: 279–288 https://doi.org/10.1007/s11240-011-9919-5
  • Crockett S L & Robson N K (2011). Taxonomy and chemotaxonomy of the genus Hypericum. Medicinal and Aromatic Plant Science and Biotechnology 5(Special Issue 1): 1-13
  • Dall'Agnol R, Ferraz A, Bernardi AP, Albring D, Nör C, Sarmento L, Lamb L, Hass M, von Poser G & Schapoval E E (2003). Antimicrobial activity of some Hypericum species. Phytomedicine 10(6-7): 511-516 https://doi.org/ 10.1078/094471103322331476
  • Dias A C P, Seabra R M, Andrade P B, Ferreres F & Fernandes-Ferreira M (2001). Xanthone production in calli and suspended cells of Hypericum perforatum. Journal of Plant Physiology 158(7): 821-827 https://doi.org/10.1078/0176-1617-00195
  • Dias A C P, Seabra R M, Andrade P B, Ferreres F & Fernandes-Ferreira M (2000). Xanthone biosynthesis and accumulation in calli and suspended cells of Hypericum androsaemum. Plant Science 150(1): 93–101 https://doi.org/10.1016/S0168-9452(99)00178-8
  • Eibl R, Meier P, Stutz I, Schildberger D, Huhn T & Eibl D (2018). Plant cell culture technology in the cosmetics and food industries: current state and future trends. Applied Microbiology and Biotechnology 102(20): 8661-8675 https://doi.org/10.1007/s00253-018-9279-8
  • Faizy WS, Toma RS & Tamer YS (2022). In vitro propagation of Pyracantha coccinea as affected by growth regulators and different carbon sources. Kirkuk University Journal for Agricultural Sciences 13(4): 244-252 http://doi.org/10.58928/KU22.13421
  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Hagège D, Cour tois D & Joseph C (2013). The influence of salicylic acid elicitation of shoots, callus, and cell suspension cultures on production of naphtodianthrones and phenylpropanoids in Hypericum perforatum L. Plant Cell, Tissue and Organ Culture 113(1): 25-39 https://doi.org/ 10.1007/s11240-012-0248-0
  • Gadzovska S, Maury S, Delaunay A, Spasenoski M, Joseph C & Hag`ege D (2007). Jasmonic acid elicitation of Hypericum perforatum L. cell suspensions and effects on the production of phenylpropanoids and naphtodianthrones. Plant Cell, Tissue and Organ Culture 89: 1– 13 https://doi.org/10.1007/s11240-007-9203-x
  • Gamborg O L, Miller R A & Ojima K (1968). Nutrient requirements of suspension cultures soybean root cells. Experimental Cell Research 50(1): 151-158 https://doi.org/ 10.1016/0014-4827(68)90403-5
  • Greeson J, Sanford B & Monti D A (2001). St. John’s wort (Hypericum perforatum L.) A review of the current pharmacological, toxicological and clinical literature. Psychopharmacology 153(4): 402-214 https://doi.org/10.1007/s002130000625
  • Griffith T N, Varela-Nallar L, Dinamarca M C & Inestrosa N C (2010). Neurobiological effects of Hyperforin and its potential in Alzheimer's disease therapy. Current Medicinal Chemistry 17(5): 391-406 https://doi.org/10.2174/092986710790226156
  • Gubser G, Vollenweider S, Eibl D & Eibl R (2021). Food ingredients and food made with plant cell and tissue cultures: State-of-the art and future trends. Engineering in Life Scince 21: 87–98 https://doi.org/10.1002/elsc.202000077
  • Guedes R C & Eriksson L A (2005). Theoretical Study of Hypericin. Journal of Photochemistry and Photobiology A: Chemistry 172(3): 293-299 https://doi.org/10.1016/j.jphotochem
  • Henzelyová J & Čellárová E (2018). Modulation of naphthodianthrone biosynthesis in hairy root-derived Hypericum tomentosum regenerants. Acta Physiologiae Plantarum 40: 82 https://doi.org/10.1007/s11738-018-2664-1
  • Hong D, Yin F, Hu L H & Lu P (2004). Sulfonated xanthones from Hypericum sampsonii, Phytochemistry, 65(18): 2595-2598 https://doi.org/ 10.1016/j.phytochem
  • Hussain M J, Abbas Y, Nazli N, Fatima S, Drouet S, Hano C & Abbasi B H (2022). Root cultures, a boon for the production of valuable compounds: A comparative review. Plants 11(3): 439 https://doi.org/ 10.3390/plants11030439. PMID: 35161423
  • Jendželovská Z, Jendželovský R, Kuchárová B & Fedoročko P (2016). Hypericin in the light and in the dark: two sides of the same coin. Frontiers in Plant Science 7: 560 https://doi.org/10.3389/fpls.2016.00560
  • Karakaş Ö, Özen H Ç & Onay A (2015). Determination of hypericin con tent in callus and cell suspension cultures of Hypericum triquetrifolium Turra. Advances in Zoology and Botany 3(4): 184-189 https://doi.org/10.13189/azb.2015.030404
  • Karakaş O, Toker Z, Tilkat E, Ozen H C & Onay A (2009). Effects of different concentrations of benzylaminopurine on shoot regenera tion and hypericin content in Hypericum Triquetrifolium Turra. Natural Product Research 23(16): 1459-1465 https://doi.org/10.1080/14786410701664528
  • Karppinen K, Hokkanen J, Tolonen A, Mattila S & Hohtola A (2007). Biosynthesis of hyperforin and adhyperforin from amino acid pre cursors in shoot cultures of Hypericum perforatum. Phytochemistry 68(7): 1038-1045 https://doi: 10.1016/j.phytochem.2007.01.001
  • Karppinen K, György Z, Kauppinen M, Tolonen A, Jalonen J, Neubauer P, Hohtola A & Häggman H (2006). In vitro propagation of Hypericum perforatum L. and accumulation of hypercins, pseudohypericins and phloroglucinols. Propagation of Ornamental Plants 6(4): 170-179
  • Kirakosyan A, Hayashi H, Inoue K, Charchoglyan A & Vardapetyan H (2000). Stimulation of the production of hypericins by man nan in Hypericum perforatum shoot cultures. Phytochemistry 53(3): 345-348. https://doi.org/ 10.1016/s0031-9422(99)00496-3
  • Klingauf P, Beuerle T, Mellenthin A, El-Moghazy S A M, Boubakir Z & Beerhues L (2005). Biosynthesis of the hyperforin skeleton in Hypericum calycinum cell cultures. Phytochemistry 66(2): 139–145 https://doi.org/10.1016
  • Kong E Y Y, Biddle J, Foale M & Adkins S W (2020). Cell suspension culture: a potential in vitro culture method for clonal propagation of coconut plantlets via somatic embryogenesis. Industrial Crops and Products 147: 112125 https://doi.org/10.1016
  • Koperdáková J, Katkovèınová Z, Košuth J, Giovannini A & Cèllárová E (2009). Morphogenetic response to plant growth regulators in transformed and untransformed Hypericum perforatum L. clones. Acta Biologica Cracovıensia Series Botanica 51(1): 61–70
  • Kruszka D, Selvakesavan R K, Kachlicki P & Franklin G (2022). Untargeted metabolomics analysis reveals the elicitation of important secondary metabolites upon treatment with various metal and metal oxide nanoparticles in Hypericum perforatum L. cell suspension cultures. Industrial Crops and Products 178: 114561 https://doi.org/10.1016/j.indcrop
  • Kwiecień I, Szydlowska A, Kawka B, Beerhues L & Ekiert H (2015). Accumulation of biologically active phenolic acids in agitated shoot cultures of three Hypericum perforatum L. cultivars ‘Elixir’, ‘Helos’, and ‘Topas’. Plant Cell, Tissue and Organ Culture 123: 273–281 https://doi.org/10.1007/s11240-015-0830-3
  • Mañero F J, Algar E, Gómez M S M, Sierra M D S & Solano B R (2012). Elicitation of secondary metabolism in Hypericum perforatum by rhizosphere bacteria and derived elicitors in seedlings and shoot cultures. Pharmaceutical Biology 50(10): 1201-1209 https://doi.org/ 10.3109/13880209.2012.664150
  • Mccoy J & Camper N D (2002). Development of a micropropagation protocol for St. John’ s wort (Hypericum perforatum L.). Horticultural Science 37(6): 978–980 https://doi.org/10.21273/HORTSCI.37.6.978
  • Medina M A, Martínez-Poveda B, Amores-Sánchez M I & Quesada A R (2006). Hyperforin: More than an antidepressant bioactive compound? Life Sciences 79(2): 105-111 https://doi.org/10.1016/j.lfs
  • Mikhovich Z E, Echishvili E E, Portnyagina N V & Skrotskaya O V (2021). Peculiarities of Hypericum perforatum L. reproduction in vitro culture and development of plants in the open field. Samara Journal of Science 10(4): 79–86 https://doi.org/10.17816/snv2021104112
  • Moura M (1998). Conservation of Hypericum foliosum Aiton, an endemic azorean species, by micropropagation. In Vitro Cellular & Developmental Biology-Plant 34(3): 244-248
  • Murashige T & Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiology 15: 473- 497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Murthy H N, Joseph K S, Paek K Y & Park S Y (2023). Anthraquinone production from cell and organ cultures of Rubia species: an overview. Metabolites 13(1):39 https://doi.org/ 10.3390/metabo13010039
  • Mulinacci M, Giaccherini C, Santamaria A R, Caniato R, Ferrari F, Valletta A, Vincieri F F & Pasqua G (2008). Anthocyanins and xanthones in the calli and regenerated shoots of Hypericum perforatum var angustifolium (sin. Fröhlich) Borkh. Plant Physiology and Biochemistry 46(4): 414-420 https://doi.org/10.1016/j.plaphy
  • Mustafa N R, Winter W D, Iren F V & Verpoorte R (2011). Initiation, growth and cryopreservation of plant cell suspension cultures. Nature Protocols 6: 715–742 https://doi.org/10.1038/nprot.2010.144
There are 51 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology
Journal Section Makaleler
Authors

Hussein Abdullah Ahmed Ahmed 0000-0003-2634-6854

Serkan Uranbey 0000-0002-0312-8099

Terezia Salaj This is me 0000-0002-8649-8246

Veronika Mistrikova This is me 0000-0003-4268-6189

Publication Date March 25, 2025
Submission Date August 19, 2024
Acceptance Date October 29, 2024
Published in Issue Year 2025 Volume: 31 Issue: 2

Cite

APA Ahmed, H. A. A., Uranbey, S., Salaj, T., Mistrikova, V. (2025). Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum species. Journal of Agricultural Sciences, 31(2), 319-331.
AMA Ahmed HAA, Uranbey S, Salaj T, Mistrikova V. Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum species. J Agr Sci-Tarim Bili. March 2025;31(2):319-331.
Chicago Ahmed, Hussein Abdullah Ahmed, Serkan Uranbey, Terezia Salaj, and Veronika Mistrikova. “Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum Species”. Journal of Agricultural Sciences 31, no. 2 (March 2025): 319-31.
EndNote Ahmed HAA, Uranbey S, Salaj T, Mistrikova V (March 1, 2025) Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum species. Journal of Agricultural Sciences 31 2 319–331.
IEEE H. A. A. Ahmed, S. Uranbey, T. Salaj, and V. Mistrikova, “Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum species”, J Agr Sci-Tarim Bili, vol. 31, no. 2, pp. 319–331, 2025.
ISNAD Ahmed, Hussein Abdullah Ahmed et al. “Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum Species”. Journal of Agricultural Sciences 31/2 (March 2025), 319-331.
JAMA Ahmed HAA, Uranbey S, Salaj T, Mistrikova V. Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum species. J Agr Sci-Tarim Bili. 2025;31:319–331.
MLA Ahmed, Hussein Abdullah Ahmed et al. “Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum Species”. Journal of Agricultural Sciences, vol. 31, no. 2, 2025, pp. 319-31.
Vancouver Ahmed HAA, Uranbey S, Salaj T, Mistrikova V. Cell Suspension Cultures and High Frequency Shoot Regeneration of Some Hypericum species. J Agr Sci-Tarim Bili. 2025;31(2):319-31.

Journal of Agricultural Sciences is published as open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).