Araştırma Makalesi
BibTex RIS Kaynak Göster

Sünmüş ekmekten izole edilen Bacillus suşlarının peptidaz üretme potansiyellerinin belirlenmesi ve peptidaz üretimi için bazı kültür şartlarının optimizasyonu

Yıl 2018, Cilt: 7 Sayı: 2, 160 - 179, 17.08.2018
https://doi.org/10.18036/aubtdc.348383

Öz

Bu çalışmada daha
önceki bir çalışmada sünmüş ekmeklerden izole edilen 14 adet Bacillus suşunun, 30 °C, 37 °C, 50 °C ve
55 °C’de peptidaz üretme potansiyellerinin belirlenmesinin ardından, peptidaz
aktivitesi en yüksek olan iki suş için en uygun enzim üretim besiyeri bileşimi
ve koşullarının bir kerede bir faktör yaklaşımı ile optimizasyonu yapılmıştır.
Bu amaçla en iyi aktivite değerini sağlayan karbon ve azot kaynağı ile
karbon/azot oranı, çalkalama hızı ve ön kültür besiyeri seçimi maliyet unsuru
da göz önünde bulundurularak tespit edilmiştir. En iyi karbon ve azot
kaynağının sırasıyla glukoz ve maya ekstraktı olduğu saptanmıştır. Ayrıca
karbon/azot oranının 1:5, çalkalama hızının 250 rpm olması durumunda ve ön
kültür hazırlanması için enzim üretim ortamı ile aynı besiyeri kullanıldığında
daha yüksek peptidaz aktivitesi değeri elde edilmiştir. 

Kaynakça

  • Temiz A. Enzimler. In: Saldamlı İ, editor. Gıda Kimyası. Ankara, Türkiye: Hacettepe Üniversitesi yayınları, 1998. ss. 259-336.
  • Adrio JL, Demain AL. Microbial cells and enzymes: a century of progress. In: Barredo JL, editor. Microbial Enzymes and Biotransformations, Totowa, New Jersey, USA: Humana Press, 2005. pp. 1-28.
  • Illanes A. Enzyme Production. In: Illanes A, editor. Enzyme Biocatalysis Principles and Applications, Netherlands: Springer, 2008. pp. 57-106.
  • Kıran ÖE, Çömlekçioğlu U, Dostbil N. Bazı mikrobiyal enzimler ve endüstrideki kullanım alanları. KSÜ Fen ve Mühendislik Dergisi 2006; 9 (1): 12-19.
  • Gupta R, Beg QK, Khan S, Chauhan B. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biot 2002; 60: 381-395.
  • Beg QK, Saxena RK, Gupta R. De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochem 2002; 37: 1103-1109.
  • Gupta R, Beg QK, Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biot 2002; 59: 15-32.
  • Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 2004; 1694: 299-310.
  • Barrett A. Proteolytic Enzymes: nomenclature and classification. In: Reynon B, Bond JS, editors. Proteolytic Enzymes, New York: Oxford University Press, 2001. pp. 1-22.
  • Salleh AB, Razak CNA, Rahman RNZRA, Basri M. Chapter 2, Protease: introduction. In: Salleh AB, Razak CNA, Basri M, editors. New Lipases and Proteases, New York : Nova Science Publishers, 2006. pp 23-39.
  • Volavsek PJA, Kirschner LAM, von Holy A. Accelerated methods to predict the rope-inducing potential of bread raw materials. S Afr J Sci 1992; 88:99–102.
  • Sorokulova IB, Reva ON, Smirnov VV, Lapa SV, Urdaci MC. Genetic diversity and involvement in bread spoilage of Bacillus strains isolated from flour and ropy bread. Lett Appl Microbiol 2003; 37: 169-173.
  • Smith JP, Dafias DP, El-Khoury W, Koukoutsis J, El-Khoury A. Shelf life and safety concerns of bakery products – a review. Crit Rev Food Sci 2004; 44: 19-55.
  • Erem F, Certel M, Karakaş B. Identification of Bacillus species isolated from ropey breads both with classical methods and API identification kits. J Fac Agric Akdeniz Univ 2009; 22(2):201–210.
  • Karakaş B. Bacillus subtilis’den α-amilaz geninin klonlanması ve Pichia pastoris mayasında ekspresyonu. Doktora Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, Turkey, 2009.
  • Anson ML. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 1938; 22: 79-89.
  • Cupp-Enyard C. Sigma’s non-specific protease activity assay-casein as a substrate. J Vis Exp 2008; 19.
  • Erem F. Normal ve kepekli ekmeklerde sünme etmeni Bacillus türlerinin belirlenmesi ve sünme üzerine kinetik çalışmalar. Yüksek Lisans Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, Turkey, 2007.
  • Puri S, Beg QK, Gupta R. Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr Microbiol 2002; 44: 286-290.
  • Sinha P, Singh RK, Srivastva R, Sharma R, Tiwari SP. Characterization and optimization of alkaline protease enzyme produced by soil borne bacteria. Trends in Life Sciences 2013; 2 (2): 38-46.
  • Mabrouk SS, Hashem AM, El-Shayeb NMA, Ismail AMS, Abdel-Fattah AF. Optimization of alkaline protease productivity by Bacillus licheniformis ATCC 21415. Bioresource Technol 1999; 69: 155-159.
  • Sangeetha R, Geetha A, Arulpandi I. Optimization of protease and lipase production by Bacillus pumilus SG 2 isolated from an industrial effluent. Internet J Microbiol 2008; Volume 5 Number 2.
  • Sevinç N. Türkiye topraklarından izole edilen Bacillus sp. suşlarından proteaz üretimi, kısmi saflaştırılması ve karakterizasyonu. Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa, Türkiye, 2010.
  • Mehrotra S, Pandey PK, Gaur R, Darmwal NS. The production of alkaline protease by a Bacillus species isolate. Bioresource Technol 1999; 67: 201-203.
  • D’costa B, Khanolkar D, Dubey SK. Partial purification and characterization of metalloprotease of halotolerant alkaliphilic bacterium Bacillus cereus from coastal sediment of Goa, India. Afr J Biotechnol 2013; 12 (31): 4905-4914.
  • Suganthi C, Mageswari A, Karthikeyan S, Anbalagan M, Sivakumar A, Gothandam KM. Screening and optimization of protease production from a halotolerant Bacillus licheniformis isolated from saltern sediments. Genet Eng Biotechnol 2013; 11: 47-52.
  • Yang JK, Shih IL, Tzeng YM, Wang SL. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb Tech 2000; 26: 406-413.
  • Akcan N, Ucar F. Production of extracellular alkaline protease from Bacillus subtilis RSKK96 with solid state fermentation. Eurasian J Biosci 2011; 5: 64-72.
  • Shafee N, Aris SN, Rahman RNZA, Basri M, Salleh AB. Optimization of environmental and nutritional conditions for the production of alkaline protease by a newly isolated bacterium Bacillus cereus strain 146. J Appl Sci Res 2005; 1(1): 1-8.
  • Chu WH. Optimization of extracellular alkaline protease production from species of Bacillus. J Ind Microbiol Biot 2007; 34: 241-245.
  • Guangrong H, Dehui D, Weilian H, Jiaxin J. Optimization of medium composition for thermostable protease production by Bacillus sp. HS08 with a stastistical method. Afr J Biotechnol 2008; 7 (8): 1115-1122.
  • Hindhumathi M, Vijayalakshmi S, Thankamani, V. Optimization and cultural characterization of alkalophilic protease producing Bacillus sp. GPA4. Research in Biotechnology 2011; 2 (4): 13-19.
  • Patel R, Dodia M, Singh SP. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: production and optimization. Process Biochem 2005; 40: 3569-3575.
  • Bhunia B, Basak B, Dey A. A review on production of serine alkali protease by Bacillus spp. J Biochem Tech 2012; 3 (4): 448-457.
  • Çalık P, Çalık G, Özdamar TH. Oxygen transfer effects in serine alkaline protease fermentation by Bacillus licheniformis: Use of citric acid as the carbon source. Enzyme Microb Tech 1998; 23: 451-461.
  • Thiry M, Cingolani D. Optimizing scale-up fermentation process. Trends Biotechnol 2002; 20 (3): 103-105.
  • Nadeem M, Qazi JI, Baig S. Effect of aeration and agitation rates on alkaline protease production by Bacillus licheniformis UV-9 mutant. Turk J Bioch 2009; 34 (2): 89-96.
  • Beheshti Maal K, Emtiazi G, Nahvi I. Increasing the alkaline protease activity of Bacillus cereus and Bacillus polymyxa simultaneously with the start of sporulation phase as a defense mechanism. Afr J Biotechnol 2011; 10 (19): 3894-3901.
  • Razak CNA, Tang SW, Basri M, Salleh AB. Preliminary study on the production of extracellular protease from a newly isolated Bacillus sp. (No.1) and the physical factors affecting its production. Pertanika J Sci Technol 1997; 5 (2): 169-177.
  • Genckal H, Tarı C. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microb Tech 2006; 39:703-710.
  • Oskouie SFG, Tabandeh F, Yakhchali B, Eftekhar F. Enhancement of alkaline protease production by Bacillus clausii using Taguchi experimental design. Afr J Biotechnol 2007; 6 (22): 2559-2564.
  • Ibrahim ASS, Al-Salamah AA. Optimization of media and cultivation conditions for alkaline protease production by alkaliphilic Bacillus halodurans. Res J Microbiol 2009; 4 (7): 251-259.
  • Ou JF, Zhu MJ. An overview of current and novel approaches for microbial neutral protease improvement. Int J Modern Biol Med 2012; 2 (1): 1-31.
  • Beg QK, Sahai V, Gupta R. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem 2003; 39: 203-209.
  • Wu J, Deng A, Shi N, Liu S, Liang Y, Wen, T. A salt, detergent, and solvent tolerant protease from Bacillus sp. B001: Low-cost, easy-purified, and enhanced production by raw material based culture strategy. Adv Biosci Biotechnol 2013; 4: 1039:1048.
  • Prakasham RS, Rao CS, Rao RS, Sarma PN. Alkaline Protease Production by an Isolated Bacillus circulans under Solid-State Fermentation Using Agroindustrial Waste: Process Parameters Optimization. Biotechnol Progr 2005; 21 (5): 1380-1388.
  • Sunitha K, Park YS, Oh TK, Lee JK. Synthesis of alkaline protease by catabolite repression-resistant Thermoactinomyces sp. E79 mutant. Biotechnol Lett 1999; 21: 155-158.
  • Hanlon GW, Hodges NA. Bacitracin and protease production in relation to sporulation during exponentieal growth of Bacillus licheniformis on poorly utilized carbon and nitrogen sources. J Bacteriol 1981; 147 (2): 427-431.
  • O’hara MB, Hageman JH. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. J Bacteriol 1990; 172 (8): 4161-4170.
  • Bierbaum G, Karutz M, Weuster-Botz D, Wandrey C. Production of protease with Bacillus licheniformis mutants insensitive to repression of exoenzyme biosynthesis. Appl Microbiol Biot 1994; 40 (5): 611-617.
  • Fleming AB, Tangney M, Jorgensen PL, Diderichsen B, Priest FG. Extracellular enzyme synthesis in a sporulation-deficient strain of Bacillus licheniformis. Appl Environ Microb 1995; 61 (11): 3775-3780.

SÜNMÜŞ EKMEKTEN İZOLE EDiLEN BACILLUS SUŞLARININ PEPTİDAZ ÜRETME POTANSİYELLERİNİN BELİRLENMESİ VE PEPTİDAZ ÜRETİMİ İÇİN BAZI KÜLTÜR ŞARTLARININ OPTİMİZASYONU

Yıl 2018, Cilt: 7 Sayı: 2, 160 - 179, 17.08.2018
https://doi.org/10.18036/aubtdc.348383

Öz

In
this study, peptidase production potential of 14 Bacillus species isolated from ropey breads in a previous study,
was determined at  30, 37, 50 and 55 °C.
Then, optimum enzyme production medium composition and conditions for two of
the
strains which were found to
have the highest peptidase activity were optimised with one factor at a time
approach. For this purpose, carbon source, nitrogen source, carbon/nitrogen
ratio, agitation rate and pre-culture medium which ensure the best peptidase
activity were determined by considering the cost-effectiveness. The best carbon
and nitrogen source was determined as glucose and yeast extract, respectively.
Furthermore, higher peptidase activity was obtained with a carbon/nitrogen
ratio of 1:5, agitation rate of 250 rpm and with the utilization of enzyme
production medium for preparing pre-culture.

Kaynakça

  • Temiz A. Enzimler. In: Saldamlı İ, editor. Gıda Kimyası. Ankara, Türkiye: Hacettepe Üniversitesi yayınları, 1998. ss. 259-336.
  • Adrio JL, Demain AL. Microbial cells and enzymes: a century of progress. In: Barredo JL, editor. Microbial Enzymes and Biotransformations, Totowa, New Jersey, USA: Humana Press, 2005. pp. 1-28.
  • Illanes A. Enzyme Production. In: Illanes A, editor. Enzyme Biocatalysis Principles and Applications, Netherlands: Springer, 2008. pp. 57-106.
  • Kıran ÖE, Çömlekçioğlu U, Dostbil N. Bazı mikrobiyal enzimler ve endüstrideki kullanım alanları. KSÜ Fen ve Mühendislik Dergisi 2006; 9 (1): 12-19.
  • Gupta R, Beg QK, Khan S, Chauhan B. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biot 2002; 60: 381-395.
  • Beg QK, Saxena RK, Gupta R. De-repression and subsequent induction of protease synthesis by Bacillus mojavensis under fed-batch operations. Process Biochem 2002; 37: 1103-1109.
  • Gupta R, Beg QK, Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biot 2002; 59: 15-32.
  • Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim Biophys Acta 2004; 1694: 299-310.
  • Barrett A. Proteolytic Enzymes: nomenclature and classification. In: Reynon B, Bond JS, editors. Proteolytic Enzymes, New York: Oxford University Press, 2001. pp. 1-22.
  • Salleh AB, Razak CNA, Rahman RNZRA, Basri M. Chapter 2, Protease: introduction. In: Salleh AB, Razak CNA, Basri M, editors. New Lipases and Proteases, New York : Nova Science Publishers, 2006. pp 23-39.
  • Volavsek PJA, Kirschner LAM, von Holy A. Accelerated methods to predict the rope-inducing potential of bread raw materials. S Afr J Sci 1992; 88:99–102.
  • Sorokulova IB, Reva ON, Smirnov VV, Lapa SV, Urdaci MC. Genetic diversity and involvement in bread spoilage of Bacillus strains isolated from flour and ropy bread. Lett Appl Microbiol 2003; 37: 169-173.
  • Smith JP, Dafias DP, El-Khoury W, Koukoutsis J, El-Khoury A. Shelf life and safety concerns of bakery products – a review. Crit Rev Food Sci 2004; 44: 19-55.
  • Erem F, Certel M, Karakaş B. Identification of Bacillus species isolated from ropey breads both with classical methods and API identification kits. J Fac Agric Akdeniz Univ 2009; 22(2):201–210.
  • Karakaş B. Bacillus subtilis’den α-amilaz geninin klonlanması ve Pichia pastoris mayasında ekspresyonu. Doktora Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, Turkey, 2009.
  • Anson ML. The estimation of pepsin, trypsin, papain and cathepsin with hemoglobin. J Gen Physiol 1938; 22: 79-89.
  • Cupp-Enyard C. Sigma’s non-specific protease activity assay-casein as a substrate. J Vis Exp 2008; 19.
  • Erem F. Normal ve kepekli ekmeklerde sünme etmeni Bacillus türlerinin belirlenmesi ve sünme üzerine kinetik çalışmalar. Yüksek Lisans Tezi, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü, Antalya, Turkey, 2007.
  • Puri S, Beg QK, Gupta R. Optimization of alkaline protease production from Bacillus sp. by response surface methodology. Curr Microbiol 2002; 44: 286-290.
  • Sinha P, Singh RK, Srivastva R, Sharma R, Tiwari SP. Characterization and optimization of alkaline protease enzyme produced by soil borne bacteria. Trends in Life Sciences 2013; 2 (2): 38-46.
  • Mabrouk SS, Hashem AM, El-Shayeb NMA, Ismail AMS, Abdel-Fattah AF. Optimization of alkaline protease productivity by Bacillus licheniformis ATCC 21415. Bioresource Technol 1999; 69: 155-159.
  • Sangeetha R, Geetha A, Arulpandi I. Optimization of protease and lipase production by Bacillus pumilus SG 2 isolated from an industrial effluent. Internet J Microbiol 2008; Volume 5 Number 2.
  • Sevinç N. Türkiye topraklarından izole edilen Bacillus sp. suşlarından proteaz üretimi, kısmi saflaştırılması ve karakterizasyonu. Yüksek Lisans Tezi, Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Bursa, Türkiye, 2010.
  • Mehrotra S, Pandey PK, Gaur R, Darmwal NS. The production of alkaline protease by a Bacillus species isolate. Bioresource Technol 1999; 67: 201-203.
  • D’costa B, Khanolkar D, Dubey SK. Partial purification and characterization of metalloprotease of halotolerant alkaliphilic bacterium Bacillus cereus from coastal sediment of Goa, India. Afr J Biotechnol 2013; 12 (31): 4905-4914.
  • Suganthi C, Mageswari A, Karthikeyan S, Anbalagan M, Sivakumar A, Gothandam KM. Screening and optimization of protease production from a halotolerant Bacillus licheniformis isolated from saltern sediments. Genet Eng Biotechnol 2013; 11: 47-52.
  • Yang JK, Shih IL, Tzeng YM, Wang SL. Production and purification of protease from a Bacillus subtilis that can deproteinize crustacean wastes. Enzyme Microb Tech 2000; 26: 406-413.
  • Akcan N, Ucar F. Production of extracellular alkaline protease from Bacillus subtilis RSKK96 with solid state fermentation. Eurasian J Biosci 2011; 5: 64-72.
  • Shafee N, Aris SN, Rahman RNZA, Basri M, Salleh AB. Optimization of environmental and nutritional conditions for the production of alkaline protease by a newly isolated bacterium Bacillus cereus strain 146. J Appl Sci Res 2005; 1(1): 1-8.
  • Chu WH. Optimization of extracellular alkaline protease production from species of Bacillus. J Ind Microbiol Biot 2007; 34: 241-245.
  • Guangrong H, Dehui D, Weilian H, Jiaxin J. Optimization of medium composition for thermostable protease production by Bacillus sp. HS08 with a stastistical method. Afr J Biotechnol 2008; 7 (8): 1115-1122.
  • Hindhumathi M, Vijayalakshmi S, Thankamani, V. Optimization and cultural characterization of alkalophilic protease producing Bacillus sp. GPA4. Research in Biotechnology 2011; 2 (4): 13-19.
  • Patel R, Dodia M, Singh SP. Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: production and optimization. Process Biochem 2005; 40: 3569-3575.
  • Bhunia B, Basak B, Dey A. A review on production of serine alkali protease by Bacillus spp. J Biochem Tech 2012; 3 (4): 448-457.
  • Çalık P, Çalık G, Özdamar TH. Oxygen transfer effects in serine alkaline protease fermentation by Bacillus licheniformis: Use of citric acid as the carbon source. Enzyme Microb Tech 1998; 23: 451-461.
  • Thiry M, Cingolani D. Optimizing scale-up fermentation process. Trends Biotechnol 2002; 20 (3): 103-105.
  • Nadeem M, Qazi JI, Baig S. Effect of aeration and agitation rates on alkaline protease production by Bacillus licheniformis UV-9 mutant. Turk J Bioch 2009; 34 (2): 89-96.
  • Beheshti Maal K, Emtiazi G, Nahvi I. Increasing the alkaline protease activity of Bacillus cereus and Bacillus polymyxa simultaneously with the start of sporulation phase as a defense mechanism. Afr J Biotechnol 2011; 10 (19): 3894-3901.
  • Razak CNA, Tang SW, Basri M, Salleh AB. Preliminary study on the production of extracellular protease from a newly isolated Bacillus sp. (No.1) and the physical factors affecting its production. Pertanika J Sci Technol 1997; 5 (2): 169-177.
  • Genckal H, Tarı C. Alkaline protease production from alkalophilic Bacillus sp. isolated from natural habitats. Enzyme Microb Tech 2006; 39:703-710.
  • Oskouie SFG, Tabandeh F, Yakhchali B, Eftekhar F. Enhancement of alkaline protease production by Bacillus clausii using Taguchi experimental design. Afr J Biotechnol 2007; 6 (22): 2559-2564.
  • Ibrahim ASS, Al-Salamah AA. Optimization of media and cultivation conditions for alkaline protease production by alkaliphilic Bacillus halodurans. Res J Microbiol 2009; 4 (7): 251-259.
  • Ou JF, Zhu MJ. An overview of current and novel approaches for microbial neutral protease improvement. Int J Modern Biol Med 2012; 2 (1): 1-31.
  • Beg QK, Sahai V, Gupta R. Statistical media optimization and alkaline protease production from Bacillus mojavensis in a bioreactor. Process Biochem 2003; 39: 203-209.
  • Wu J, Deng A, Shi N, Liu S, Liang Y, Wen, T. A salt, detergent, and solvent tolerant protease from Bacillus sp. B001: Low-cost, easy-purified, and enhanced production by raw material based culture strategy. Adv Biosci Biotechnol 2013; 4: 1039:1048.
  • Prakasham RS, Rao CS, Rao RS, Sarma PN. Alkaline Protease Production by an Isolated Bacillus circulans under Solid-State Fermentation Using Agroindustrial Waste: Process Parameters Optimization. Biotechnol Progr 2005; 21 (5): 1380-1388.
  • Sunitha K, Park YS, Oh TK, Lee JK. Synthesis of alkaline protease by catabolite repression-resistant Thermoactinomyces sp. E79 mutant. Biotechnol Lett 1999; 21: 155-158.
  • Hanlon GW, Hodges NA. Bacitracin and protease production in relation to sporulation during exponentieal growth of Bacillus licheniformis on poorly utilized carbon and nitrogen sources. J Bacteriol 1981; 147 (2): 427-431.
  • O’hara MB, Hageman JH. Energy and calcium ion dependence of proteolysis during sporulation of Bacillus subtilis cells. J Bacteriol 1990; 172 (8): 4161-4170.
  • Bierbaum G, Karutz M, Weuster-Botz D, Wandrey C. Production of protease with Bacillus licheniformis mutants insensitive to repression of exoenzyme biosynthesis. Appl Microbiol Biot 1994; 40 (5): 611-617.
  • Fleming AB, Tangney M, Jorgensen PL, Diderichsen B, Priest FG. Extracellular enzyme synthesis in a sporulation-deficient strain of Bacillus licheniformis. Appl Environ Microb 1995; 61 (11): 3775-3780.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Fundagül Erem 0000-0003-1562-0686

Muharrem Certel 0000-0002-1901-5590

Yayımlanma Tarihi 17 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 7 Sayı: 2

Kaynak Göster

APA Erem, F., & Certel, M. (2018). Sünmüş ekmekten izole edilen Bacillus suşlarının peptidaz üretme potansiyellerinin belirlenmesi ve peptidaz üretimi için bazı kültür şartlarının optimizasyonu. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, 7(2), 160-179. https://doi.org/10.18036/aubtdc.348383
AMA Erem F, Certel M. Sünmüş ekmekten izole edilen Bacillus suşlarının peptidaz üretme potansiyellerinin belirlenmesi ve peptidaz üretimi için bazı kültür şartlarının optimizasyonu. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. Ağustos 2018;7(2):160-179. doi:10.18036/aubtdc.348383
Chicago Erem, Fundagül, ve Muharrem Certel. “Sünmüş Ekmekten Izole Edilen Bacillus suşlarının Peptidaz üretme Potansiyellerinin Belirlenmesi Ve Peptidaz üretimi için Bazı kültür şartlarının Optimizasyonu”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7, sy. 2 (Ağustos 2018): 160-79. https://doi.org/10.18036/aubtdc.348383.
EndNote Erem F, Certel M (01 Ağustos 2018) Sünmüş ekmekten izole edilen Bacillus suşlarının peptidaz üretme potansiyellerinin belirlenmesi ve peptidaz üretimi için bazı kültür şartlarının optimizasyonu. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7 2 160–179.
IEEE F. Erem ve M. Certel, “Sünmüş ekmekten izole edilen Bacillus suşlarının peptidaz üretme potansiyellerinin belirlenmesi ve peptidaz üretimi için bazı kültür şartlarının optimizasyonu”, Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, c. 7, sy. 2, ss. 160–179, 2018, doi: 10.18036/aubtdc.348383.
ISNAD Erem, Fundagül - Certel, Muharrem. “Sünmüş Ekmekten Izole Edilen Bacillus suşlarının Peptidaz üretme Potansiyellerinin Belirlenmesi Ve Peptidaz üretimi için Bazı kültür şartlarının Optimizasyonu”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7/2 (Ağustos 2018), 160-179. https://doi.org/10.18036/aubtdc.348383.
JAMA Erem F, Certel M. Sünmüş ekmekten izole edilen Bacillus suşlarının peptidaz üretme potansiyellerinin belirlenmesi ve peptidaz üretimi için bazı kültür şartlarının optimizasyonu. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2018;7:160–179.
MLA Erem, Fundagül ve Muharrem Certel. “Sünmüş Ekmekten Izole Edilen Bacillus suşlarının Peptidaz üretme Potansiyellerinin Belirlenmesi Ve Peptidaz üretimi için Bazı kültür şartlarının Optimizasyonu”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, c. 7, sy. 2, 2018, ss. 160-79, doi:10.18036/aubtdc.348383.
Vancouver Erem F, Certel M. Sünmüş ekmekten izole edilen Bacillus suşlarının peptidaz üretme potansiyellerinin belirlenmesi ve peptidaz üretimi için bazı kültür şartlarının optimizasyonu. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2018;7(2):160-79.