Research Article
BibTex RIS Cite

Structural and Thermal Properties of Electrospun Whey Protein/PEO Nanofibers

Year 2021, Volume: 2 Issue: 2, 32 - 37, 31.12.2021
https://doi.org/10.51539/biotech.1034044

Abstract

Nano-scale fibers or films obtained by adding natural active agents to natural food proteins are promising materials for packaging purposes. Whey proteins (WPs) are one of the most popular matrices in application with their cheap and sustainable availability. They have many functional properties and their antimicrobial, antiviral and anticarcinogenic properties are highlighted as well. Enzymatic hydrolysis can increase their functionality such as inducing gelation and revealing bioactive peptides. These features can make whey proteins good candidates for the fabrication of talented fiber structures through electrospinning. Electrospinning technique based on the deposition of fine fibers on a collector surface under electrical forces can be used to form protein nanofibers. The purpose of this research is to produce whey-based protein nanofibers and determine their structural and thermal features by infra-red spectroscopy and thermogravimetric analysis. A high molecular polymer, polyethylene oxide (PEO) was used in combination with whey protein concentrate (WPC) to increase spinnability. Besides, enzymatic hydrolysis of WPC enhanced the viscosity of the protein/polymer solution and helped electrospinning ability. Both non-hydrolyzed and hydrolyzed WPC/PEO nanofibers exhibited promising morphological, structural and thermal properties for targeted use in food and biomedical applications. Further research will focus on the application of these protein nanofibers for food packaging purposes.

Thanks

The authors are very thankful to Scientific Analysis, Technological Application, and Research Center of Usak University for FT-IR measurements.

References

  • Andrade, J., Pereira, C. G., Carlos de Almeida Junior, J., Ramos Viana, C. C., Natália de Oliveira Neves, L., Fonseca da Silva, P. H., … de Carvalho dos Anjos, V. (2018). FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT. doi:10.1016
  • Deitzel, J. M., Kleinmeyer, J., Harris, D. E. A., & Tan, N. B. (2001). The effect of processing variables on the morphology of electrospun nanolifs and textiles. Polymer, 42(1): 261-272.
  • De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of materials science, 44(5): 1357
  • Erding, B., Acar, J. " Modified Atmosphere Packaging in Food Preservation (MAP)". Gıda 21 (1996)
  • Islam, Md & Hamdan, Sinin & Ahmad, Mansor & Hasan, Mahbub & Hassan, Azman & Haafiz, M.K & Jawaid, Mohammad. (2014). Effect of PVA-co-MMA Copolymer on the Physical,
  • İnce Yardımcı, A., Tarhan, Ö. (2020) " ELECTROSPUN PROTEIN NANOLEAFS AND FOOD APPLICATIONS ". Muğla Bilim ve Teknoloji Dergisi 6: 52-62
  • Kocaman N., Sarımehmetoğlu B. (2010) Use of Smart Packaging in Foods. Veteriner Hekimler Derneği Dergisi 81(2): 67-72.
  • Koski, A., Yim, K., & Shivkumar, S. (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3): 493-497.
  • Ratna, D., Divekar, S., Samui, A. B., Chakraborty, B. C., & Banthia, A. K. (2006). Poly(ethylene oxide)/clay nanocomposite: Thermomechanical properties and morphology. Polymer, 47(11), 4068–4074. doi:10.1016
  • Topuz, F. ve Uyar, T. (2019). Antioxidant, Antibacterial and Antifungal Electrospun Nanofibers for Food Packaging Applications. International Food Studies, 108927.
  • Thompson, C. J., Chase, G. G., Yarin, A. L., & Reneker, D. H. (2007). Effects of parameters on nanolif diameter determined from electrospinning model. Polymer, 48(23), 6913-6922.
  • Tan, S. H., Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Systematic parameter study for ultra-fine lif fabrication via electrospinning process. Polymer 46(16): 6128-6134.
  • Theron, S. A., Zussman, E., & Yarin, A. L. (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6): 2017-2030.
  • Mechanical and Thermal Properties of Tropical Wood Materials. Advances in Materials Science and Engineering. 2014. 10.1155/2014/626850.
  • Y. Jin, Z. F. Wang, P. C. Lim, D. Y. Pan, J. Wei and C. K. Wong, "MEMS vacuum packaging technology and applications," Proceedings of the 5th Electronics Packaging Technology Conference (EPTC 2003), 2003, pp. 301-306, doi: 10.1109/EPTC.2003.1271534.
Year 2021, Volume: 2 Issue: 2, 32 - 37, 31.12.2021
https://doi.org/10.51539/biotech.1034044

Abstract

References

  • Andrade, J., Pereira, C. G., Carlos de Almeida Junior, J., Ramos Viana, C. C., Natália de Oliveira Neves, L., Fonseca da Silva, P. H., … de Carvalho dos Anjos, V. (2018). FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT. doi:10.1016
  • Deitzel, J. M., Kleinmeyer, J., Harris, D. E. A., & Tan, N. B. (2001). The effect of processing variables on the morphology of electrospun nanolifs and textiles. Polymer, 42(1): 261-272.
  • De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of materials science, 44(5): 1357
  • Erding, B., Acar, J. " Modified Atmosphere Packaging in Food Preservation (MAP)". Gıda 21 (1996)
  • Islam, Md & Hamdan, Sinin & Ahmad, Mansor & Hasan, Mahbub & Hassan, Azman & Haafiz, M.K & Jawaid, Mohammad. (2014). Effect of PVA-co-MMA Copolymer on the Physical,
  • İnce Yardımcı, A., Tarhan, Ö. (2020) " ELECTROSPUN PROTEIN NANOLEAFS AND FOOD APPLICATIONS ". Muğla Bilim ve Teknoloji Dergisi 6: 52-62
  • Kocaman N., Sarımehmetoğlu B. (2010) Use of Smart Packaging in Foods. Veteriner Hekimler Derneği Dergisi 81(2): 67-72.
  • Koski, A., Yim, K., & Shivkumar, S. (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters, 58(3): 493-497.
  • Ratna, D., Divekar, S., Samui, A. B., Chakraborty, B. C., & Banthia, A. K. (2006). Poly(ethylene oxide)/clay nanocomposite: Thermomechanical properties and morphology. Polymer, 47(11), 4068–4074. doi:10.1016
  • Topuz, F. ve Uyar, T. (2019). Antioxidant, Antibacterial and Antifungal Electrospun Nanofibers for Food Packaging Applications. International Food Studies, 108927.
  • Thompson, C. J., Chase, G. G., Yarin, A. L., & Reneker, D. H. (2007). Effects of parameters on nanolif diameter determined from electrospinning model. Polymer, 48(23), 6913-6922.
  • Tan, S. H., Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Systematic parameter study for ultra-fine lif fabrication via electrospinning process. Polymer 46(16): 6128-6134.
  • Theron, S. A., Zussman, E., & Yarin, A. L. (2004) Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6): 2017-2030.
  • Mechanical and Thermal Properties of Tropical Wood Materials. Advances in Materials Science and Engineering. 2014. 10.1155/2014/626850.
  • Y. Jin, Z. F. Wang, P. C. Lim, D. Y. Pan, J. Wei and C. K. Wong, "MEMS vacuum packaging technology and applications," Proceedings of the 5th Electronics Packaging Technology Conference (EPTC 2003), 2003, pp. 301-306, doi: 10.1109/EPTC.2003.1271534.
There are 15 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Mustafa Gözler 0000-0003-2095-1877

Atike İnce Yardımcı 0000-0001-5482-4230

Özgür Tarhan 0000-0003-4406-2433

Publication Date December 31, 2021
Acceptance Date December 26, 2021
Published in Issue Year 2021 Volume: 2 Issue: 2

Cite

APA Gözler, M., İnce Yardımcı, A., & Tarhan, Ö. (2021). Structural and Thermal Properties of Electrospun Whey Protein/PEO Nanofibers. Bulletin of Biotechnology, 2(2), 32-37. https://doi.org/10.51539/biotech.1034044
AMA Gözler M, İnce Yardımcı A, Tarhan Ö. Structural and Thermal Properties of Electrospun Whey Protein/PEO Nanofibers. Bull. Biotechnol. December 2021;2(2):32-37. doi:10.51539/biotech.1034044
Chicago Gözler, Mustafa, Atike İnce Yardımcı, and Özgür Tarhan. “Structural and Thermal Properties of Electrospun Whey Protein/PEO Nanofibers”. Bulletin of Biotechnology 2, no. 2 (December 2021): 32-37. https://doi.org/10.51539/biotech.1034044.
EndNote Gözler M, İnce Yardımcı A, Tarhan Ö (December 1, 2021) Structural and Thermal Properties of Electrospun Whey Protein/PEO Nanofibers. Bulletin of Biotechnology 2 2 32–37.
IEEE M. Gözler, A. İnce Yardımcı, and Ö. Tarhan, “Structural and Thermal Properties of Electrospun Whey Protein/PEO Nanofibers”, Bull. Biotechnol., vol. 2, no. 2, pp. 32–37, 2021, doi: 10.51539/biotech.1034044.
ISNAD Gözler, Mustafa et al. “Structural and Thermal Properties of Electrospun Whey Protein/PEO Nanofibers”. Bulletin of Biotechnology 2/2 (December 2021), 32-37. https://doi.org/10.51539/biotech.1034044.
JAMA Gözler M, İnce Yardımcı A, Tarhan Ö. Structural and Thermal Properties of Electrospun Whey Protein/PEO Nanofibers. Bull. Biotechnol. 2021;2:32–37.
MLA Gözler, Mustafa et al. “Structural and Thermal Properties of Electrospun Whey Protein/PEO Nanofibers”. Bulletin of Biotechnology, vol. 2, no. 2, 2021, pp. 32-37, doi:10.51539/biotech.1034044.
Vancouver Gözler M, İnce Yardımcı A, Tarhan Ö. Structural and Thermal Properties of Electrospun Whey Protein/PEO Nanofibers. Bull. Biotechnol. 2021;2(2):32-7.