Derleme
BibTex RIS Kaynak Göster

DESTEKLİ SIVI MEMBRANLAR VE KULLANIM ALANLARI

Yıl 2018, Cilt: 1 Sayı: 2, 59 - 67, 01.04.2018

Öz

Bu çalışmada, kullanımı umut vaat eden alternatif bir ayırma yöntemi olan destekli sıvı membranlar (DSM) incelenmiştir. DSM, ince mikrogözenekli bir katı desteğin gözeneklerinde, sıvıların immobilize edildiği yapıdır. Farklı gözenek boyutu ve karaktere sahip olan katı desteğin gözeneklerine ekstraktant yükleme yöntemleri, destekli sıvı membranların nasıl hazırlandığı, hazırlanan membran ile istenen element veya bileşiklerin besleme fazdan sıyırıcı faza nasıl taşındığı ve ayrıldığı açıklanmıştır. Ayırmak istenen gaz, metal veya bileşiğe özgü ekstraktant seçilip membrana immobilize edildikten sonra hazırlanan destek membran, besleme ve sıyırıcı fazdan oluşan iki hücreli düzenek arasına yerleştirilir ve denemeler gerçekleştirilir. DSM ekstraksiyon ve sıyırma basamaklarını tek bir adımda gerçekleştirerek yüksek ayırma faktörlerine ulaşma olasılığına sahiptir. Gözeneklere yüklenen ekstraktant miktarı diğer ayırma yöntemlerinde kullanılan miktarla karşılaştırıldığında daha azdır. Böylece kullanılan kimyasal miktarı azalmakta ve daha az atık üretilmektedir. Ancak birçok avantajına rağmen kararsız karakterde olan bu membranların kullanım ömrü kısıtlıdır. Bu yüzden membran destek, ekstraktant ve seyreltici seçiminde dikkatli olunmalıdır. Destek materyalin karakterizasyonu SEM, FESEM, SEM-EDX gibi cihazlarla yapılmaktadır. Destekli sıvı membranların analitik, biyoteknoloji ve çevre bilimleri gibi birçok alanda uygulamalarına rastlanmıştır. Nükleer sanayide ise destekli sıvı membranlara olan ilgi son yıllarda artmıştır. Aktinitler ve fisyon ürünlerinin ayrılması gibi uygulamalarda araştırma potansiyeline sahip olan düz levha tipi destekli sıvı membranların, endüstriyel boyutta uygulanmalarında sıkıntılar yaşanmaktadır. Bu nedenle, nükleer yakıt döngüsünde farklı basamaklarda kullanılma potansiyeline sahip olan düz levha tipi membranlar nükleer güç santralleri kurma ve nükleer teknolojiye sahip olma girişiminde olan ülkeler için önem arz etmektedir.

Kaynakça

  • Agreda D, Garcia-Diaz I, López FA, Alguacil FJ. 2011. Supported liquid membranes technologies in metals removal from liquid effluents. Revista De Metal, 47(2): 146-168.
  • Ansari SA, Mohapatra PK, Prabhu DR, Manchanda VK. 2006. Transport of americium (III) through a supported liquid membrane containing N,N,N’,N’-tetraoctyl-3-oxapentane diamide (TODGA) in n-dodecane as the carrier. J Memb Sci, 282: 133–141.
  • Ansari SA, Mohapatra PK, Prabhu DR, Manchanda VK. 2008. Transport of lanthanides and fission products through supported liquid membranes containing N,N,N′,N′-tetraoctyl diglycolamide (TODGA) as the carrier. Desalination, 232: 254-261.
  • Bhatluri KK, Manna MS, Ghoshal AK, Saha P. 2015. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation. J Hazard Mater, 299: 504-512.
  • Bhattacharyya A, Mohapatra PK, Gadly T, Raut DR, Ghosh SK, Manchanda VK. 2011. Liquid–liquid extraction and flat sheet supported liquid membrane studies on Am (III) and Eu (III) separation using 2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine as the extractant. J Hazard Mater, 195: 238-244.
  • Branco LC, Crespo JG, Afonso CAM. 2002. Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes. Chem Europ J, 8(17): 3865-3871.
  • Cserjési P, Nemestóthy N, Vass A, Csanádi Z, Béla-fi-Bakó K. 2009. Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination, 245: 743–747.
  • Danesi PR. 1984. Separation of metal species by supported liquid membranes. Separ Sci Technol, 19 (11&12): 857-894.
  • Dozol JF, Casas J, Sastre A. 1993. Stability of flat sheet supported liquid membranes in the transport of radionuclides from reprocessing concentrate solutions. J Memb Sci, 82: 237-246.
  • Fernandez FJH, Rios APF, Alonso T, Palacios JM, Villora G. 2009. Preparation of supported ionic liquid membranes: Influence of the ionic liquid immobilization method on their operational stability. J Memb Sci, 341: 172–177.
  • Fortunato R, Afonso CAM, Reis MAM, Crespo JG. 2004. Supported liquid membranes using ionic liquids: study of stability and transport mechanisms. J Memb Sci, 242: 197–209.
  • Fortunato R, Branco LC, Carlos AMA, Benavente J, Crespo JG. 2006. Electrical impedance spectroscopy characterisation of supported ionic liquid membranes. J Memb Sci, 270: 42–49.
  • Gan Q, Rooney D, Zou Y. 2006. Supported ionic liquid membranes in nanopore structure for gas separation and transport studies. Desalination, 199: 535–537.
  • Hanioka S, Maruyamaa T, Sotani T, Teramoto M, Matsuyamaa H, Nakashima K, Hanaki M, Kubota F, Goto M. 2008. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. J Memb Sci, 314: 1–4.
  • Hill C, Dozol JF, Rouquette H, Eymard S, Tour-nois B. 1996. Study of the stability of some supported liquid membranes. J Memb Sci, 114: 73-80.
  • Ho WS, Wang B, Neumuller TE, Roller J. 2001. Supported liquid membranes for removal and recovery of metals from waste waters and process streams. Envir Progress, 20 (2): 117-121.
  • Ho WS. 2003. Removal and recovery of metals and other materials by supported liquid membranes with strip dispersion. Annals New York Acad Sci, 984: 97–122.
  • Huang TC, Huang CT. 1986. The mechanism of transport of uranyl nitrate across a solid supported liquid membrane using tributyl phosphate as mobile carrier. J Memb Sci, 29: 295–308.
  • Kedari CS, Pandit SS, Ramanujam A. 1999. Studies on the in situ electrooxidation and selective permeation of cerium (IV) across a bulk liquid membrane containing tributyl phosphate as the ion transporter. Separ Sci Technol, 34(9): 1907-1923.
  • Kentish SE, Stevens GW. 2001. Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem Engin J, 84: 149–159.
  • Kislik, VS. 2010. Liquid Membranes Principles&Applications in Chemical Seperations & Wastewater Treatment. Elsevier Press: Oxford, UK, 1-445.
  • Kocherginsky NM, Yang Q, Seelam L. 2007. Recent advances in supported liquid membrane technology. Separ Purif Technol, 53: 171-177.
  • Kouki N, Tayep R, Zarrougui R, Dhahbi M. 2010. Transport of salisylic acid through supported liquid membrane based on ionic liquids. Separ Purif Technol, 76: 8-14.
  • Kubota F, Shimobori Y, Koyanagi Y, Shimojo K, Kamiya N, Goto M. 2010. Uphill transport of rare-Earth metals through a highly stable supported liquid membrane based on an ionic liquid. Analytical Sci, 26: 289-290.
  • Malik MA, Hashima MA, Nabi F. 2011. Ionic liquids in supported liquid membrane technology. Chem Engin J, 171: 242-254.
  • Matsumoto M, Inomoto Y, Kondo K. 2005. Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. J Memb Sci, 246: 77–81.
  • Miguel ERS, Vital X, Gyves J. 2014. Cr (VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: System analysis and optimization through experimental design strategies. J Hazard Mater, 273: 253-262.
  • Mohapatra PK, Manchanda VK. 2003. Liquid Membrane based seperations of actinides and fission products. Indian J Chem, 42: 2925-2938.
  • Mohapatra PK, Lakshmi DS, Mohan D, Manchanda VK. 2006. Uranium pertraction across a PTFE flatsheet membrane containing Aliquat 336 as the carrier. Separ Purif Technol, 51: 24–30.
  • Nakashio F. 1993. Recent advances in separation of metals by liquid surfactant membrane. J Chem Engin Japan, 26(2): 123-133.
  • Neplenbroek AM, Bargeman D, Smolders CA. 1990. The stability of supported liquid membranes. Desalination, 79: 303-312.
  • Neplenbroek AM, Bargeman D, Smolders CA. 1992. Supported liquid membranes: instability effects. J Memb Sci, 67: 121-132.
  • Neves LA, Crespo JG, Coelhoso IM. 2010. Gas permeation studies in supported ionic liquid membranes. J Memb Sci, 357: 160-170.
  • Ozevci G. 2017. Destekli iyonik sıvılı membran sistemi kullanarak lantanın taşınımında etkili faktörlerin optimizasyonu. Doktora Tezi, Ege Üniversitesi Nükleer Bilimler Enstitüsü, İzmir.
  • Panja S, Mohapatra PK, Tripathi SC, Manchanda VK. 2011. Facilitated transport of uranium (VI) across supported liquid membranes containing T2EHDGA as the carrier extractant. J Hazard Mater, 188: 281-287.
  • Parhi PK, Sarangi K. 2008. Seperation of copper, zinc, cobalt and nickel ions by supported liquid membrane technique using LIX 841, TOPS-99 and Cyanex 272. Sepa Purif Technol, 59: 169-174.
  • Parhi PK. 2013. Supported liquid membrane principle and its practices: A short review. J Chem, 1-11.
  • Park SW, Choi BS, Kim SS, Lee JW. 2006. Facilitated transport of organic acid through a supported liquid membrane with a carrier. Desalination, 193: 304-312.
  • Ruhela R, Panja S, Sharma JN, Tomar BS, Tripathi SC, Hubli RC, Suri AK. 2012. Facilitated transport of Pd (II) through a supported liquid membrane (SLM) containing N, N, N’, N’,-tetra-(2-ethylhexyl) thiodiglycolamide T(2EH)TDGA: A novel carrier. J Hazard Mater, 229-230: 66-71.
  • Sastre AM, Kumar A, Shukla JP, Singh RK. 1998. Improved techniques in liquid membrane seperations: An overview. Separ Purif Rev, 27(2): 213-298.
  • Scholander PF. 1960. Oxygen transport through hemoglobin solutions. Sci, 131: 585-90.
  • Scindia YM, Pandey AK, Reddy AVR. 2005. Coupled-diffusion transport of Cr (VI) across anion-exchange membranes prepared by physical and chemical immobilization methods. J Memb Sci, 249: 143–152.
  • Shukla JP, Misra SK. 1991. Carrier-mediated transport of uranyl ions across tributyl phosphate–dodecane liquid membranes. J Memb Sci, 64: 93–102.
  • Song ZW, Jiang LY. 2013. Optimization of morphology and performance of PVDF hollow fiber for direct contact membrane distillation using experimental design. Chem Engin Sci, 101: 130-143.
  • Wittenberg, JB. 1966. The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J Biol Chem, 241: 104-14.
  • Yang XJ, Fane AG, Soldenhoff K. 2003. Comparison of liquid membrane processes for metal separations: Permeability, stability, and selectivity. Indust Engin Chem Res, 42: 392-403.
  • Yang XJ, Fane T. 1997. Effect of membrane preparation on the lifetime of supported liquid membranes. J Memb Sci, 133: 269-273.
  • Zha FF, Fane AG, Fell CJD. 1995.Instability mechanisms of supported liquid membranes in phenol transport process. J Memb Sci, 107: 59-74.
  • Zhao C, Xu X, Chen J, Yang F. 2014. Optimization of preparation conditions of poly (vinylidene fluoride)/ graphene oxide microfiltration membranes by the taguchi experimental design. Desalination, 334: 17-22.

Supported liquid membranes and Its applications

Yıl 2018, Cilt: 1 Sayı: 2, 59 - 67, 01.04.2018

Öz

In this study, as a promising alternative separation method supported liquid membranes (SLMs) are investigated. SLM is a structure that liquid immobilized into pores of a thin microporous support. Supports have different pore size and character. Preparation methods of SLM, transport mechanism and separation of element or compound from feed to stripping phase are clarified. Proper extractant is decided by considering the preferred separated gas, metal or compound and extractant is immobilized into pores of membrane. Afterwards, prepared SLM is put into middle of the two glass diffusion cell ad experiments are carried out. By SLM, extraction and strip phases occur in one-step and it has possibility of achieving high separation factors. If it is compared with other separation methods the extractant amount used is fewer than the others. Thus, the amount of chemicals and contaminants could be reduced. However, despite several advantages the membranes are unstable and their lifetimes are limited so it is significant choosing proper membrane support, extractant and diluter. Support membrane is characterized by SEM, FESEM, and SEM-EDX. They have applications in numerous areas such as analytic, biotechnology and environmental science. In recent years, nuclear industry has an increasing trend to SLMs. In separation of actinides and fission products flat sheet SLMs have potential but in industrial applications it is difficult to scale up. Hence it is significant for Turkey attempts to construct nuclear power plants and have nuclear technology like other countries to enhance flat sheet SLMs which have potential in nuclear fuel cycle steps

Kaynakça

  • Agreda D, Garcia-Diaz I, López FA, Alguacil FJ. 2011. Supported liquid membranes technologies in metals removal from liquid effluents. Revista De Metal, 47(2): 146-168.
  • Ansari SA, Mohapatra PK, Prabhu DR, Manchanda VK. 2006. Transport of americium (III) through a supported liquid membrane containing N,N,N’,N’-tetraoctyl-3-oxapentane diamide (TODGA) in n-dodecane as the carrier. J Memb Sci, 282: 133–141.
  • Ansari SA, Mohapatra PK, Prabhu DR, Manchanda VK. 2008. Transport of lanthanides and fission products through supported liquid membranes containing N,N,N′,N′-tetraoctyl diglycolamide (TODGA) as the carrier. Desalination, 232: 254-261.
  • Bhatluri KK, Manna MS, Ghoshal AK, Saha P. 2015. Supported liquid membrane based removal of lead(II) and cadmium(II) from mixed feed: Conversion to solid waste by precipitation. J Hazard Mater, 299: 504-512.
  • Bhattacharyya A, Mohapatra PK, Gadly T, Raut DR, Ghosh SK, Manchanda VK. 2011. Liquid–liquid extraction and flat sheet supported liquid membrane studies on Am (III) and Eu (III) separation using 2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine as the extractant. J Hazard Mater, 195: 238-244.
  • Branco LC, Crespo JG, Afonso CAM. 2002. Studies on the selective transport of organic compounds by using ionic liquids as novel supported liquid membranes. Chem Europ J, 8(17): 3865-3871.
  • Cserjési P, Nemestóthy N, Vass A, Csanádi Z, Béla-fi-Bakó K. 2009. Study on gas separation by supported liquid membranes applying novel ionic liquids. Desalination, 245: 743–747.
  • Danesi PR. 1984. Separation of metal species by supported liquid membranes. Separ Sci Technol, 19 (11&12): 857-894.
  • Dozol JF, Casas J, Sastre A. 1993. Stability of flat sheet supported liquid membranes in the transport of radionuclides from reprocessing concentrate solutions. J Memb Sci, 82: 237-246.
  • Fernandez FJH, Rios APF, Alonso T, Palacios JM, Villora G. 2009. Preparation of supported ionic liquid membranes: Influence of the ionic liquid immobilization method on their operational stability. J Memb Sci, 341: 172–177.
  • Fortunato R, Afonso CAM, Reis MAM, Crespo JG. 2004. Supported liquid membranes using ionic liquids: study of stability and transport mechanisms. J Memb Sci, 242: 197–209.
  • Fortunato R, Branco LC, Carlos AMA, Benavente J, Crespo JG. 2006. Electrical impedance spectroscopy characterisation of supported ionic liquid membranes. J Memb Sci, 270: 42–49.
  • Gan Q, Rooney D, Zou Y. 2006. Supported ionic liquid membranes in nanopore structure for gas separation and transport studies. Desalination, 199: 535–537.
  • Hanioka S, Maruyamaa T, Sotani T, Teramoto M, Matsuyamaa H, Nakashima K, Hanaki M, Kubota F, Goto M. 2008. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane. J Memb Sci, 314: 1–4.
  • Hill C, Dozol JF, Rouquette H, Eymard S, Tour-nois B. 1996. Study of the stability of some supported liquid membranes. J Memb Sci, 114: 73-80.
  • Ho WS, Wang B, Neumuller TE, Roller J. 2001. Supported liquid membranes for removal and recovery of metals from waste waters and process streams. Envir Progress, 20 (2): 117-121.
  • Ho WS. 2003. Removal and recovery of metals and other materials by supported liquid membranes with strip dispersion. Annals New York Acad Sci, 984: 97–122.
  • Huang TC, Huang CT. 1986. The mechanism of transport of uranyl nitrate across a solid supported liquid membrane using tributyl phosphate as mobile carrier. J Memb Sci, 29: 295–308.
  • Kedari CS, Pandit SS, Ramanujam A. 1999. Studies on the in situ electrooxidation and selective permeation of cerium (IV) across a bulk liquid membrane containing tributyl phosphate as the ion transporter. Separ Sci Technol, 34(9): 1907-1923.
  • Kentish SE, Stevens GW. 2001. Innovations in separations technology for the recycling and re-use of liquid waste streams. Chem Engin J, 84: 149–159.
  • Kislik, VS. 2010. Liquid Membranes Principles&Applications in Chemical Seperations & Wastewater Treatment. Elsevier Press: Oxford, UK, 1-445.
  • Kocherginsky NM, Yang Q, Seelam L. 2007. Recent advances in supported liquid membrane technology. Separ Purif Technol, 53: 171-177.
  • Kouki N, Tayep R, Zarrougui R, Dhahbi M. 2010. Transport of salisylic acid through supported liquid membrane based on ionic liquids. Separ Purif Technol, 76: 8-14.
  • Kubota F, Shimobori Y, Koyanagi Y, Shimojo K, Kamiya N, Goto M. 2010. Uphill transport of rare-Earth metals through a highly stable supported liquid membrane based on an ionic liquid. Analytical Sci, 26: 289-290.
  • Malik MA, Hashima MA, Nabi F. 2011. Ionic liquids in supported liquid membrane technology. Chem Engin J, 171: 242-254.
  • Matsumoto M, Inomoto Y, Kondo K. 2005. Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids. J Memb Sci, 246: 77–81.
  • Miguel ERS, Vital X, Gyves J. 2014. Cr (VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: System analysis and optimization through experimental design strategies. J Hazard Mater, 273: 253-262.
  • Mohapatra PK, Manchanda VK. 2003. Liquid Membrane based seperations of actinides and fission products. Indian J Chem, 42: 2925-2938.
  • Mohapatra PK, Lakshmi DS, Mohan D, Manchanda VK. 2006. Uranium pertraction across a PTFE flatsheet membrane containing Aliquat 336 as the carrier. Separ Purif Technol, 51: 24–30.
  • Nakashio F. 1993. Recent advances in separation of metals by liquid surfactant membrane. J Chem Engin Japan, 26(2): 123-133.
  • Neplenbroek AM, Bargeman D, Smolders CA. 1990. The stability of supported liquid membranes. Desalination, 79: 303-312.
  • Neplenbroek AM, Bargeman D, Smolders CA. 1992. Supported liquid membranes: instability effects. J Memb Sci, 67: 121-132.
  • Neves LA, Crespo JG, Coelhoso IM. 2010. Gas permeation studies in supported ionic liquid membranes. J Memb Sci, 357: 160-170.
  • Ozevci G. 2017. Destekli iyonik sıvılı membran sistemi kullanarak lantanın taşınımında etkili faktörlerin optimizasyonu. Doktora Tezi, Ege Üniversitesi Nükleer Bilimler Enstitüsü, İzmir.
  • Panja S, Mohapatra PK, Tripathi SC, Manchanda VK. 2011. Facilitated transport of uranium (VI) across supported liquid membranes containing T2EHDGA as the carrier extractant. J Hazard Mater, 188: 281-287.
  • Parhi PK, Sarangi K. 2008. Seperation of copper, zinc, cobalt and nickel ions by supported liquid membrane technique using LIX 841, TOPS-99 and Cyanex 272. Sepa Purif Technol, 59: 169-174.
  • Parhi PK. 2013. Supported liquid membrane principle and its practices: A short review. J Chem, 1-11.
  • Park SW, Choi BS, Kim SS, Lee JW. 2006. Facilitated transport of organic acid through a supported liquid membrane with a carrier. Desalination, 193: 304-312.
  • Ruhela R, Panja S, Sharma JN, Tomar BS, Tripathi SC, Hubli RC, Suri AK. 2012. Facilitated transport of Pd (II) through a supported liquid membrane (SLM) containing N, N, N’, N’,-tetra-(2-ethylhexyl) thiodiglycolamide T(2EH)TDGA: A novel carrier. J Hazard Mater, 229-230: 66-71.
  • Sastre AM, Kumar A, Shukla JP, Singh RK. 1998. Improved techniques in liquid membrane seperations: An overview. Separ Purif Rev, 27(2): 213-298.
  • Scholander PF. 1960. Oxygen transport through hemoglobin solutions. Sci, 131: 585-90.
  • Scindia YM, Pandey AK, Reddy AVR. 2005. Coupled-diffusion transport of Cr (VI) across anion-exchange membranes prepared by physical and chemical immobilization methods. J Memb Sci, 249: 143–152.
  • Shukla JP, Misra SK. 1991. Carrier-mediated transport of uranyl ions across tributyl phosphate–dodecane liquid membranes. J Memb Sci, 64: 93–102.
  • Song ZW, Jiang LY. 2013. Optimization of morphology and performance of PVDF hollow fiber for direct contact membrane distillation using experimental design. Chem Engin Sci, 101: 130-143.
  • Wittenberg, JB. 1966. The molecular mechanism of hemoglobin-facilitated oxygen diffusion. J Biol Chem, 241: 104-14.
  • Yang XJ, Fane AG, Soldenhoff K. 2003. Comparison of liquid membrane processes for metal separations: Permeability, stability, and selectivity. Indust Engin Chem Res, 42: 392-403.
  • Yang XJ, Fane T. 1997. Effect of membrane preparation on the lifetime of supported liquid membranes. J Memb Sci, 133: 269-273.
  • Zha FF, Fane AG, Fell CJD. 1995.Instability mechanisms of supported liquid membranes in phenol transport process. J Memb Sci, 107: 59-74.
  • Zhao C, Xu X, Chen J, Yang F. 2014. Optimization of preparation conditions of poly (vinylidene fluoride)/ graphene oxide microfiltration membranes by the taguchi experimental design. Desalination, 334: 17-22.
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Reviews
Yazarlar

Gülçin Özevci

Yayımlanma Tarihi 1 Nisan 2018
Gönderilme Tarihi 9 Mart 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Özevci, G. (2018). DESTEKLİ SIVI MEMBRANLAR VE KULLANIM ALANLARI. Black Sea Journal of Engineering and Science, 1(2), 59-67.
AMA Özevci G. DESTEKLİ SIVI MEMBRANLAR VE KULLANIM ALANLARI. BSJ Eng. Sci. Nisan 2018;1(2):59-67.
Chicago Özevci, Gülçin. “DESTEKLİ SIVI MEMBRANLAR VE KULLANIM ALANLARI”. Black Sea Journal of Engineering and Science 1, sy. 2 (Nisan 2018): 59-67.
EndNote Özevci G (01 Nisan 2018) DESTEKLİ SIVI MEMBRANLAR VE KULLANIM ALANLARI. Black Sea Journal of Engineering and Science 1 2 59–67.
IEEE G. Özevci, “DESTEKLİ SIVI MEMBRANLAR VE KULLANIM ALANLARI”, BSJ Eng. Sci., c. 1, sy. 2, ss. 59–67, 2018.
ISNAD Özevci, Gülçin. “DESTEKLİ SIVI MEMBRANLAR VE KULLANIM ALANLARI”. Black Sea Journal of Engineering and Science 1/2 (Nisan 2018), 59-67.
JAMA Özevci G. DESTEKLİ SIVI MEMBRANLAR VE KULLANIM ALANLARI. BSJ Eng. Sci. 2018;1:59–67.
MLA Özevci, Gülçin. “DESTEKLİ SIVI MEMBRANLAR VE KULLANIM ALANLARI”. Black Sea Journal of Engineering and Science, c. 1, sy. 2, 2018, ss. 59-67.
Vancouver Özevci G. DESTEKLİ SIVI MEMBRANLAR VE KULLANIM ALANLARI. BSJ Eng. Sci. 2018;1(2):59-67.

                                                24890