Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Çeltik Çeşitlerinin Demir Noksanlığına Dayanıklılıklarının Belirlenmesi

Yıl 2021, Cilt: 4 Sayı: 3, 89 - 95, 01.07.2021
https://doi.org/10.34248/bsengineering.899672

Öz

Bu çalışmanın amacı, bazı çeltik çeşitlerinin demir noksanlığına dayanıklılıklarının belirlenmesidir. 5 farklı çeltik çeşidine ilişkin fideler %0 ve %4 kireç (CaCO3) içeren 1 kg kuvars kumu dolu plastik saksılara her saksıda 10 bitki olacak şekilde dikilmiştir. Çeltik bitkisine her kireç dozunda 0 ve 45 µM Fe dozlarında Fe-EDDHA içeren bitki besin çözeltisi verilmiştir. Demir noksanlığı şartlarında yetiştirilen 5 farklı çeltik çeşidinin incelenen 22 özellik bakımından 2 ana grupta toplandığı görülmüştür. Bunlardan Biga incisi ve Osmancık-97 çeşitleri birinci grubu; Ronaldo ve Edirne çeşitleri ise ikinci grubu oluşturmuştur. Diğer yandan, Hamzadere çeşidi ise Ronaldo ve Edirne çeşitlerinin oluşturduğu ikinci gruba daha yakın bulunmuştur. Demir noksanlığı şartlarında yetiştirilen çeşitler arasında incelenen özellikler bakımından en yakın iki çeltik çeşidinin Biga incisi ve Osmancık-97 çeşitleri olduğu; buna karşın, birbirine en uzak çeltik çeşitlerinin ise Biga incisi ve Hamzadere çeltik çeşitleri olduğu tespit edilmiştir. Demir noksanlığına en dayanıklı çeşit Biga incisi; buna karşın, en hassas çeşidin ise Hamzadere çeşidi olduğu tespit edilmiştir. Demir noksanlığı şartlarında yetiştirilen Ronaldo ve Edirne çeltik çeşitlerinde demir noksanlığını belirleyen en iyi özelliklerinin nisbi glutatyon redüktaz aktiviteleri ve nisbi prolin kapsamına ilişkin değerler olduğu ve bu özellikler yönünden bu çeşitlerin iyi çeşitler oldukları belirlenmiştir. Bu çeşitler aynı grupta toplanmışlardır. Ronaldo çeltik çeşidinde, nisbi glutatyon redüktaz aktivitesi ve nisbi prolin kapsamı sırasıyla %95,39 ve %90,95; Edirne çeşidinde ise sırasıyla %78,94 ve 87,21 bulunmuştur. Demir noksanlığı şartlarında yetiştirilen Osmancık-97 ve Biga incisi çeşitlerinin ise nisbi karotenoid kapsamları yönünden iyi çeşitler oldukları ve bu çeşitlerin aynı grupta bulundukları belirlenmiştir.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • Amako K, Chen G-X, Asada K. 1994. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolicisozymes of ascorbate peroxidase in plants. Plant Cell Physiol, 35: 497-504.
  • Ananieva EA., Alexieva VS, Popova LP. 2002. Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J Plant Physiol, 159: 685-693.
  • Andiç E. 2011. Buğday’da kükürt-demir ve kükürt-çinko beslenmesinin mikro besin elementi ve azot konsantrasyonuna etkisi. Yüksek Lisans Tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 121, Adana.
  • Arnon D. 1949. Copper enzymes in isolated chloroplasts. Plant Physiol, 24: 1-12.
  • Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK. 2013. Exploiting new tools for iron bio-fortification of rice. Biotechnol Adv, 31: 1624-1633.
  • Bates L, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.
  • Chen L, Zhao X, Ding C, Wang S, Ding Y. 2014. Physiological and molecular responses under Fe deficiency in two rice (Oryza Sativa) genotypes differing in iron accumulation ability in seeds. J Plant Growth Regul, 33: 769-777.
  • Dhindsa RS, Plumb-Dhindsa P, Throne TA. 1981b. Leaf senescence correlated within creased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot, 32: 93-101.
  • Dos Santos RS, de Araujo Júnior AT, Pegoraro C, de Oliveira AC. 2017. Dealing with iron metabolism in rice: From breeding for stress tolerance to biofortification. Genet Mol Biol, 40: 312-325.
  • Epstein E, Bloom AJ. 2005. Mineral Nutrition of Plants: Principles and Perspectives, 2nd Edn. Sinauer Associates, Sunderland, UK, pp 380.
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48: 909-930.
  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe, S, Matsuhashi S, Takahashi M. 2006. Rice plants take up iron as an Fe+3 phytosiderophore and as Fe+2. Plant J, 45: 335-346.
  • Jiang M, Zhang J. 2002. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 53(379): 2401-2410.
  • Kacar B, İnal A. 2008. Bitki analizleri, 1. Baskı, Nobel Yayınları, Ankara, Türkiye, pp 891.
  • Kobayashi T, Nishizawa NK. 2012. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol, 63, 131-152.
  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK. 2013. Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep, 31: 569-580.
  • Lindsay WL, Schwab AP. 1982. The Chemistry of iron in soils and its availability to plants. J Plant Nutr, 5: 821-840.
  • Marschner H. 1995. Function of mineral nutrients: micronutrients. In: Mineral nutrition of higher plants. Academic Press, London, UK, pp 313-324.
  • Masuda M, Shimochi E, Hamada T, Senoura T, Kobayashi T, Aung MS, Ishimaru Y, Ogo Y, Nakanishi H, Nishizawa NK. 2017. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS One, 12(3): e0173441.
  • Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK. 2014. Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice. Plant J, 77(2): 246-60.
  • Ojeda M, Schaffer B, Davies FS. 2004. Root and leaf ferric chelate reductase activity in pond apple and soursop. J Plant Nutr, 27: 1381-1393.
  • Oserkowsky J. 1933. Quantitative relation between chlorophyl land iron in gren and chlorotic pear leaves. Plant Physiol, 8: 449-468.
  • Palmer CM, Guerinot ML. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol, 5: 333-340.
  • Rogers EE, Guerinot ML. 2002. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis, Plant Cell, 14: 1787-1799.
  • Rong-li SHI, Hong-mei HAO, Xiao-yun FAN, Karim MR, Fu-suo Z, Chun-qin Z. 2012. Responses of Aerobic Rice (Oryza sativa L.) to Iron Deficiency. J Integr Agric, 11(6): 938-945
  • Römheld V, Marschner H. 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol, 80: 175–180.
  • Selby-Pham J, Lutz A, Moreno-Moyano LT, Boughton BA, Roessner U, Johnson AT. 2017. Diurnal changes in transcript and metabolite levels during the iron deficiency response of rice. Rice (N.Y), 10(1), DOI: 10.1186/s12284-017-0152-7.
  • Stein RJ, Ricachenevsky FK, Fett JP. 2009. Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2). Plant Sci, 177: 563-569.
  • Takagi S, Kamei S, Takemoto T. 1984. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr, 7: 469-477.
  • Torun A, Erdem H, Torun MB. 2017. Ayçiçeği genotiplerinin demir noksanlığına karşı tolerans düzeylerinin belirlenmesi. Türk Tarım-Gıda Bilim ve Tek Derg, 5 (11): 1323-1329.
  • Wakamatsu K, Takahama U. 1993. Changes in peroxidase activity and in peroxidase isozymes in carrot callus. Physiol Plant, 88: 167-171.
  • Witham FH, Blaydes DF, Devlin RM. 1971. Experiments in plant physiology. Van Nostrend Reinhold Company, New York. Pp 254.

Determining the Resistance of Some Rice Cultivars to Iron Deficiency

Yıl 2021, Cilt: 4 Sayı: 3, 89 - 95, 01.07.2021
https://doi.org/10.34248/bsengineering.899672

Öz

The aim of this study is to determine the resistance of some paddy varieties to iron deficiency. Seedlings of 5 different paddy varieties were planted in plastic pots filled with 1 kg of quartz sand containing 0 %and 4 %lime (CaCO3), with 10 plants per pot. A nutrient solution containing Fe-EDDHA in doses of 0 and 45 µM Fe in each lime dose was given to the rice plant. It was seen that 5 different paddy varieties grown under iron deficiency conditions were collected in 2 main groups in terms of 22 characteristics. While Biga pearl and Osmancık-97 varieties formed the first group, Ronaldo and Edirne varieties formed the second group. On the other hand, Hamzadere variety was found closer to the second group consisting of Ronaldo and Edirne varieties. Among the varieties grown under iron deficiency conditions, the closest two paddy varieties in terms of the characteristics examined are Biga pearl and Osmancık-97 varieties; On the other hand, it has been determined that the most distant paddy varieties are Biga pearl and Hamzadere paddy varieties. It was determined that the most resistant variety to iron deficiency was Biga pearl, while the most sensitive variety was the Hamzadere variety. It has been determined that the best characteristics determining iron deficiency in Ronaldo and Edirne paddy cultivars grown under iron deficiency conditions are relative glutathione reductase activities and values related to relative proline content and these varieties are good varieties in terms of these features. These varieties are gathered in the same group. Relative glutathione reductase activity and relative proline content were respectively 95.39%and 90.95%in Ronaldo paddy variety, while in Edirne variety it was 78.94%and 87.21%, respectively. Osmancık-97 and Biga pearl varieties grown under iron deficiency conditions are good varieties in terms of their relative carotenoid content and it has been determined that these varieties are in the same group.

Proje Numarası

-

Kaynakça

  • Amako K, Chen G-X, Asada K. 1994. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolicisozymes of ascorbate peroxidase in plants. Plant Cell Physiol, 35: 497-504.
  • Ananieva EA., Alexieva VS, Popova LP. 2002. Treatment with salicylic acid decreases the effects of paraquat on photosynthesis. J Plant Physiol, 159: 685-693.
  • Andiç E. 2011. Buğday’da kükürt-demir ve kükürt-çinko beslenmesinin mikro besin elementi ve azot konsantrasyonuna etkisi. Yüksek Lisans Tezi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, 121, Adana.
  • Arnon D. 1949. Copper enzymes in isolated chloroplasts. Plant Physiol, 24: 1-12.
  • Bashir K, Nozoye T, Ishimaru Y, Nakanishi H, Nishizawa NK. 2013. Exploiting new tools for iron bio-fortification of rice. Biotechnol Adv, 31: 1624-1633.
  • Bates L, Waldren RP, Teare ID. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39: 205-207.
  • Chen L, Zhao X, Ding C, Wang S, Ding Y. 2014. Physiological and molecular responses under Fe deficiency in two rice (Oryza Sativa) genotypes differing in iron accumulation ability in seeds. J Plant Growth Regul, 33: 769-777.
  • Dhindsa RS, Plumb-Dhindsa P, Throne TA. 1981b. Leaf senescence correlated within creased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot, 32: 93-101.
  • Dos Santos RS, de Araujo Júnior AT, Pegoraro C, de Oliveira AC. 2017. Dealing with iron metabolism in rice: From breeding for stress tolerance to biofortification. Genet Mol Biol, 40: 312-325.
  • Epstein E, Bloom AJ. 2005. Mineral Nutrition of Plants: Principles and Perspectives, 2nd Edn. Sinauer Associates, Sunderland, UK, pp 380.
  • Gill SS, Tuteja N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem, 48: 909-930.
  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe, S, Matsuhashi S, Takahashi M. 2006. Rice plants take up iron as an Fe+3 phytosiderophore and as Fe+2. Plant J, 45: 335-346.
  • Jiang M, Zhang J. 2002. Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot, 53(379): 2401-2410.
  • Kacar B, İnal A. 2008. Bitki analizleri, 1. Baskı, Nobel Yayınları, Ankara, Türkiye, pp 891.
  • Kobayashi T, Nishizawa NK. 2012. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol, 63, 131-152.
  • Kumar S, Asif MH, Chakrabarty D, Tripathi RD, Dubey RS, Trivedi PK. 2013. Differential expression of rice lambda class GST gene family members during plant growth, development, and in response to stress conditions. Plant Mol Biol Rep, 31: 569-580.
  • Lindsay WL, Schwab AP. 1982. The Chemistry of iron in soils and its availability to plants. J Plant Nutr, 5: 821-840.
  • Marschner H. 1995. Function of mineral nutrients: micronutrients. In: Mineral nutrition of higher plants. Academic Press, London, UK, pp 313-324.
  • Masuda M, Shimochi E, Hamada T, Senoura T, Kobayashi T, Aung MS, Ishimaru Y, Ogo Y, Nakanishi H, Nishizawa NK. 2017. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil. PLoS One, 12(3): e0173441.
  • Nozoye T, Nagasaka S, Bashir K, Takahashi M, Kobayashi T, Nakanishi H, Nishizawa NK. 2014. Nicotianamine synthase 2 localizes to the vesicles of iron-deficient rice roots, and its mutation in the YXXφ or LL motif causes the disruption of vesicle formation or movement in rice. Plant J, 77(2): 246-60.
  • Ojeda M, Schaffer B, Davies FS. 2004. Root and leaf ferric chelate reductase activity in pond apple and soursop. J Plant Nutr, 27: 1381-1393.
  • Oserkowsky J. 1933. Quantitative relation between chlorophyl land iron in gren and chlorotic pear leaves. Plant Physiol, 8: 449-468.
  • Palmer CM, Guerinot ML. 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nat Chem Biol, 5: 333-340.
  • Rogers EE, Guerinot ML. 2002. FRD3, a member of the multidrug and toxin efflux family, controls iron deficiency responses in Arabidopsis, Plant Cell, 14: 1787-1799.
  • Rong-li SHI, Hong-mei HAO, Xiao-yun FAN, Karim MR, Fu-suo Z, Chun-qin Z. 2012. Responses of Aerobic Rice (Oryza sativa L.) to Iron Deficiency. J Integr Agric, 11(6): 938-945
  • Römheld V, Marschner H. 1986. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol, 80: 175–180.
  • Selby-Pham J, Lutz A, Moreno-Moyano LT, Boughton BA, Roessner U, Johnson AT. 2017. Diurnal changes in transcript and metabolite levels during the iron deficiency response of rice. Rice (N.Y), 10(1), DOI: 10.1186/s12284-017-0152-7.
  • Stein RJ, Ricachenevsky FK, Fett JP. 2009. Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2). Plant Sci, 177: 563-569.
  • Takagi S, Kamei S, Takemoto T. 1984. Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr, 7: 469-477.
  • Torun A, Erdem H, Torun MB. 2017. Ayçiçeği genotiplerinin demir noksanlığına karşı tolerans düzeylerinin belirlenmesi. Türk Tarım-Gıda Bilim ve Tek Derg, 5 (11): 1323-1329.
  • Wakamatsu K, Takahama U. 1993. Changes in peroxidase activity and in peroxidase isozymes in carrot callus. Physiol Plant, 88: 167-171.
  • Witham FH, Blaydes DF, Devlin RM. 1971. Experiments in plant physiology. Van Nostrend Reinhold Company, New York. Pp 254.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Research Articles
Yazarlar

Güney Akınoğlu 0000-0003-4624-2876

Ahmet Korkmaz Bu kişi benim 0000-0001-5595-0618

Proje Numarası -
Yayımlanma Tarihi 1 Temmuz 2021
Gönderilme Tarihi 19 Mart 2021
Kabul Tarihi 31 Mart 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 3

Kaynak Göster

APA Akınoğlu, G., & Korkmaz, A. (2021). Bazı Çeltik Çeşitlerinin Demir Noksanlığına Dayanıklılıklarının Belirlenmesi. Black Sea Journal of Engineering and Science, 4(3), 89-95. https://doi.org/10.34248/bsengineering.899672
AMA Akınoğlu G, Korkmaz A. Bazı Çeltik Çeşitlerinin Demir Noksanlığına Dayanıklılıklarının Belirlenmesi. BSJ Eng. Sci. Temmuz 2021;4(3):89-95. doi:10.34248/bsengineering.899672
Chicago Akınoğlu, Güney, ve Ahmet Korkmaz. “Bazı Çeltik Çeşitlerinin Demir Noksanlığına Dayanıklılıklarının Belirlenmesi”. Black Sea Journal of Engineering and Science 4, sy. 3 (Temmuz 2021): 89-95. https://doi.org/10.34248/bsengineering.899672.
EndNote Akınoğlu G, Korkmaz A (01 Temmuz 2021) Bazı Çeltik Çeşitlerinin Demir Noksanlığına Dayanıklılıklarının Belirlenmesi. Black Sea Journal of Engineering and Science 4 3 89–95.
IEEE G. Akınoğlu ve A. Korkmaz, “Bazı Çeltik Çeşitlerinin Demir Noksanlığına Dayanıklılıklarının Belirlenmesi”, BSJ Eng. Sci., c. 4, sy. 3, ss. 89–95, 2021, doi: 10.34248/bsengineering.899672.
ISNAD Akınoğlu, Güney - Korkmaz, Ahmet. “Bazı Çeltik Çeşitlerinin Demir Noksanlığına Dayanıklılıklarının Belirlenmesi”. Black Sea Journal of Engineering and Science 4/3 (Temmuz 2021), 89-95. https://doi.org/10.34248/bsengineering.899672.
JAMA Akınoğlu G, Korkmaz A. Bazı Çeltik Çeşitlerinin Demir Noksanlığına Dayanıklılıklarının Belirlenmesi. BSJ Eng. Sci. 2021;4:89–95.
MLA Akınoğlu, Güney ve Ahmet Korkmaz. “Bazı Çeltik Çeşitlerinin Demir Noksanlığına Dayanıklılıklarının Belirlenmesi”. Black Sea Journal of Engineering and Science, c. 4, sy. 3, 2021, ss. 89-95, doi:10.34248/bsengineering.899672.
Vancouver Akınoğlu G, Korkmaz A. Bazı Çeltik Çeşitlerinin Demir Noksanlığına Dayanıklılıklarının Belirlenmesi. BSJ Eng. Sci. 2021;4(3):89-95.

                                                24890