Araştırma Makalesi
BibTex RIS Kaynak Göster

Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide

Yıl 2025, Cilt: 8 Sayı: 1, 75 - 93, 15.01.2025
https://doi.org/10.34248/bsengineering.1542181

Öz

Nanoparticles (NPs) and bulk forms of MoO3 and MoS2 (0.1, 1, 10, 100 µg/mL) were investigated by chromosome aberrations, CBMN-Cyt and comet assay in human lymphocytes for the first time. This study compared both MoO3 and MoS2 and their NPs and bulk forms. Both NP and bulk forms of MoO3 and MoS2 did not cause an increase in the frequency of abnormal cell and CA/Cell compared to the control. While both NPs and bulk forms of MoS2 significantly increased the micronucleus frequency, MoO3 did not cause an increase. This increase was slightly higher in MoS2 NPs than in their bulk form. According to our comet assay results, both NPs and bulk forms of the MoO3 and MoS2 significantly increased the DNA damage at all concentrations. Both MoO3 and MoS2 significantly decreased MI. Neither MoO3 nor MoS2 caused a significant variation in NDI, CBPI, % cytostasis, NPB, and NBUD frequency compared to the negative control. Both particles were also characterized physicochemically. Our results revealed that MoO3 and MoS2 may have weak genotoxic and cytotoxic effects. Therefore, the toxicity potential of these particles and their underlying mechanisms for safer usage need to be investigated in more detail by other in vivo and in vitro genotoxicity and cytotoxicity tests.

Etik Beyan

This research was approved by the Clinical Research Ethics Committee of the Faculty of Medicine at Gazi University (Approved Date: 18/10/2021; protocol no: 07; modified format 27/12/2021; No: 240).

Proje Numarası

-

Teşekkür

This study is based on Nur Korkmaz's doctoral thesis. The supervisor of this thesis is Fatma Ünal.

Kaynakça

  • Akbas E, Unal F, Yuzbasioglu D. 2022. Genotoxic effects of gadobutrol and gadoversetamide active substances used in magnetic resonance imaging in human peripheral lymphocytes in vitro. Drug Chem Toxicol, 45(6): 2471-2482.
  • Akhondipour M, Faghihi Zarandi A, Amirri A, Gommnami N, Vazirinejad R. 2018. Studying the toxicity of molybdenum trioxide nanoparticles in male Wister rats. J Occup Health Epidemiol, 7(4): 233-239.
  • Anh Tran T, Krishnamoorthy K, Song, YW, Cho SK, Kim SJ. 2014. Toxicity of nano molybdenum trioxide toward invasive breast cancer cells. ACS Appl Mater Interfaces, 6(4): 2980-2986.
  • Appel JH, Li DO, Podlevsky JD, Debnath A, Green AA, Wang QH, Chae J. 2016. Low cytotoxicity and genotoxicity of two- dimensional MoS2 and WS2. ACS Biomater Sci Eng, 2(3): 361- 367.
  • Asadi F, Sadeghzadeh M, Jalilvand A, Nedaei K, Asadi Y, Heidari A. 2019. Effect of molybdenum trioxide nanoparticles on ovary function in female rats. J Adv Med Biomed Res, 27(121): 48-53.
  • Babayan EA, Bagramyan SB, Pogosyan AS. 1980. Effect of some chemical hazards involved in molybdenum production on the chromosome apparatus of experimental animals and humans. Gig T Prof Zabol, 33-36.
  • Bakhoum SF, Cantley LC. 2018. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell, 174(6): 1347-1360.
  • Bankoglu EE, Schuele C, Stopper H. 2021. Cell survival after DNA damage in the comet assay. Arch Toxicol, 95(12): 3803-3813.
  • Benhusein G, Mutch E, Aburawi S, Williams F. 2010. Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay. Libyan J Med, 5(1): 4637.
  • Bhattacharjee S. 2016. DLS and zeta potential–what they are and what they are not?. J Cont Release, 235: 337-351.
  • Božinović K, Nestić D, Centa UG, Ambriović-Ristov A, Dekanić A, de Bisschop L, Majhen D. 2020. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes. Toxicology, 444: 152564.
  • Burzlaff A, Beevers C, Pearce H, Lloyd, Klipsch K. 2017. New studies on the in vitro genotoxicity of sodium molybdate and their impact on the overall assessment of the genotoxicity of molybdenum substances. Regul Toxicol Pharmacol, 86: 279- 291.
  • Chen T, Zou H. Wu X, Liu C, Situ B, Zheng L, Yang G. 2018. Nanozymatic antioxidant system based on MoS2 nanosheets. ACS Appl Mater Interfaces, 10(15): 12453-12462.
  • Clogston JD, Patri AK. 2011. Zeta potential measurement. In: McNeil S, editors. Characterization of nanoparticles intended for drug delivery: Methods in molecular biology. Humana Press, Totowa, New Jersey, USA, pp: 63-70.
  • Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, Azqueta A. 2023. Measuring DNA modifications with the comet assay: A compendium of protocols. Nat Protoc, 18(3): 929-989.
  • Collins AR. 2004. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol, 26(3): 249-261.
  • Cui SG, Zhang YL, Guo HW, Zhou BH, Tian EJ, Zhao J, Wang HW. 2023. Molybdenum-induced apoptosis of splenocytes and thymocytes and changes of peripheral blood in sheep. Biol Trace Elem Res, 201: 1-11.
  • Daley B, Doherty AT, Fairman B, Case CP. 2004. Wear debris from hip or knee replacements causes chromosomal damage in human cells in tissue culture. J Bone Joint Surg Br, 86(4): 598- 606.
  • Decker S, Kunisch E, Moghaddam A, Renkawitz T, Westhauser F. 2021. Molybdenum trioxide enhances viability, osteogenic differentiation and extracellular matrix formation of human bone marrow-derived mesenchymal stromal cells. J Trace Elem Med Biol, 68: 126827.
  • Desai ML, Jha S, Basu H, Saha S, Singhal RK, Kailasa SK. 2020. Simple hydrothermal approach for synthesis of fluorescent molybdenum disulfide quantum dots: Sensing of Cr3+ ion and cellular imaging. Mater Sci Eng C, 111: 110778.
  • Diamantino TC, Guilhermino L, Almeida E, Soares AM. 2000. Toxicity of sodium molybdate and sodium dichromate to Daphnia magna Straus evaluated in acute, chronic, and acetylcholinesterase inhibition tests. Ecotoxicol Environ Saf, 45(3): 253-259.
  • Duan G, Wen L, Sun X, Wei Z, Duan R, Zeng J, Gao M. 2022. Healing diabetic ulcers with MoO3− X nanodots possessing intrinsic ROS‐scavenging and bacteria‐killing capacities. Small, 18(10): 2107137.
  • Duijf PH, Nanayakkara D, Nones K, Srihari S, Kalimutho M, Khanna KK. 2019. Mechanisms of genomic instability in breast cancer. Trends Mol Med, 25(7): 595-611.
  • Duthie SJ, Collins AR. 1997. The influence of cell growth, detoxifying enzymes and DNA repair on hydrogen peroxide-mediated DNA damage (measured using the comet assay) in human cells. Free Radic Biol Med, 22(4): 717-724.
  • Evans HJ. 1984. Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. In: Kilbey B J, Legator M, Nichols W, Ramel C editors, Handbook of mutagenicity test procedures, Elsevier Sciences, Amsterdam, the Netherlands, pp: 405-424.
  • Farabaugh CS, Doak S, Roy S, Elespuru R. 2023. In vitro micronucleus assay: Method for assessment of nanomaterials using cytochalasin B. Front Toxicol, 5:1171960.
  • Fenech M. 2000. The in vitro micronucleus technique. Mutat Res, 455(1): 81-95.
  • Fenech M. 2007. Cytokinesis-block micronucleus cytome assay. Nat Protoc, 2(5): 1084-1104.
  • Fenech M. 2020. Cytokinesis-block micronucleus cytome assay evolution into a more comprehensive method to measure chromosomal instability. Genes, 11(10): 1203.
  • Frawley LE, Orr-Weaver TL. 2015. Polyploidy. Curr Biol, 25(9): R353-R358.
  • García-Carpintero S, González VJ, Frontiñán-Rubio J, Esteban-Arranz A, Vázquez E, Durán-Prado M. 2023. Screening the micronucleus assay for reliable estimation of the genotoxicity of graphene and other 2D materials. Carbon, 215: 118426.
  • Gibson DP, Brauninger R, Shaffi HS, Kerckaert GA, LeBoeuf RA, Isfort RJ, Aardema MJ. 1997. Induction of micronuclei in Syrian hamster embryo cells: comparison to results in the SHE cell transformation assay for National Toxicology Program test chemicals. Mutat Res Genet Toxicol Environ Mutagen, 392(1-2): 61-70.
  • Gopal R, Sharma YK, Shukla AK. 2016. Effect of molybdenum stress on growth, yield and seed quality in black gram. J Plant Nutr, 39(4): 463-469.
  • Helleday T, Lo J, van Gent DC, Engelward BP. 2007. DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair, 6(7): 923-935.
  • Indrakumar J, Korrapati PS. 2020. Steering efficacy of nano molybdenum towards cancer: mechanism of action. Biol Trace Elem Res, 194: 121-134.
  • Jiang S, Wei J, Li N, Wang Z, Zhang Y, Xu R, Li Y. 2022. The UBP14-CDKB1; 1-CDKG2 cascade controls endoreduplication and cell growth in Arabidopsis. Plant Cell, 34(4): 1308-1325.
  • Joo SH, Zhao D. 2017. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review. J Hazard Mater, 322: 29-47.
  • Kailasa SK, Patel MR, Koduru JR, Park TJ. 2024. Recent advances of molybdenum-based nanostructures for molecular and ionic species sensing and separation applications. Coord Chem Rev, 501, 215595.
  • Kalefetoğlu Macar T, Macar O, Yalçın E, Çavuşoğlu K. 2020. Resveratrol ameliorates the physiological, biochemical, cytogenetic, and anatomical toxicities induced by copper (II) chloride exposure in Allium cepa L. Environ Sci Pollut Res, 27: 657-667.
  • Kaur J, Kaur K, Pervaiz N, Mehta SK. 2021. Spherical MoO3 Nanoparticles for Photocatalytic Removal of Eriochrome Black T. ACS Appl Nano Mater, 4(11): 12766-12778.
  • Khangarot BS. 1991. Toxicity of metals to a freshwater tubificid worm Tubifex tubifex (Muller). Bull Environ Contam Toxicol, 46(6).
  • Kirsch-Volders M, Plas G, Elhajouji A, Lukamowicz M, Gonzalez L, Loock KV, Decordier I. 2011. The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol, 85(8): 873-899.
  • Kizilkaya D, Unal F, Beyzi E, Kulahci MB, Calis Ismetoglu G, Yuzbasioglu D, Suludere Z. 2023. Comparative investigation of iron oxide nanoparticles and microparticles using the in vitro bacterial reverse mutation and in vivo Allium chromosome aberration and comet assays. J Nanopart Res, 25(9): 173.
  • Kothaplamoottil Sivan S, Padinjareveetil AK, Padil VV, Pilankatta R, George B, Senan C, Varma RS. 2019. Greener assembling of MoO3 nanoparticles supported on gum arabic: cytotoxic effects and catalytic efficacy towards reduction of p-nitrophenol. Clean Technol Environ Policy, 21(8): 1549-1561.
  • Kumari J, Mangala P. 2022. Fabrication and characterization of molybdenum trioxide nanoparticles and their anticancer, antibacterial and antifungal activities. MJChem, 24(1): 36-53.
  • Ladon D, Doherty A, Newson R, Turner J, Bhamra M, Case C.P. 2004. Changes in metal levels and chromosome aberrations in the peripheral blood of patients after metal-on-metal hip arthroplasty. J Arthroplasty, 19(8): 78-83.
  • Li J, Guiney LM, Downing JR, Wang X, Chang CH, Jiang J, Xia T. 2021. Dissolution of 2D molybdenum disulfide generates differential toxicity among liver cell types compared to non‐toxic 2D boron nitride effects. Small, 17(25): 2101084.
  • Libalova H, Zavodna T, Margaryan H, Elzeinova F, Milcova A, Vrbova K, Rössner P. 2024. Differential DNA damage response and cell fate in human lung cells after exposure to genotoxic compounds. In Vitro Toxicol, 94: 105710.
  • Lorge E, Hayashi M, Albertini S, Kirkland D. 2008. Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test: I. Theoretical aspects. Mutat Res Genet Toxicol Environ Mutagen, 655(1-2): 1–3.
  • Lunardi CN, Gomes AJ, Rocha FS, De Tommaso J, Patience GS. 2021. Experimental methods in chemical engineering: Zeta potential. The Can J Chem Eng, 99(3): 627-639.
  • Macar O, Kalefetoğlu Macar T, Çavuşoğlu K, Yalçın E. 2020. Protective effects of anthocyanin-rich bilberry (Vaccinium myrtillus L.) extract against copper (II) chloride toxicity. Environ Sci Pollut Res, 27: 1428-1435.
  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. 2014. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 8(3): 233-278.
  • Mamur S, Yüzbaşıoğlu D, Bülbül SN, Ünal F. 2022. Investigation of cyto-genotoxic effects of a food sweetener Acesulfame potassium. Food and Health, 8(4): 273-283.
  • Michalová V, Galdíková M, Holečková B, Koleničová S, Schwarzbacherová V. 2020. Micronucleus assay in environmental biomonitoring. Folia Vet, 64(2): 20-28.
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci, 101(2): 239-253.
  • Nefic H, Handzic I. 2013. The effect of age, sex, and lifestyle factors on micronucleus frequency in peripheral blood lymphocytes of the Bosnian population. Mutat Res Genet Toxicol Environ Mutagen, 753(1): 1-11.
  • Ngo LP, Kaushal S, Chaim IA, Mazzucato P, Ricciardi C, Samson LD, Engelward BP. 2021. CometChip analysis of human primary lymphocytes enables quantification of inter-individual differences in the kinetics of repair of oxidative DNA damage. Free Radic Biol Med, 174, 89-99.
  • Nishioka H. (1975). Mutagenic activities of metal compounds in bacteria. Mutat Res, 31(3):185-189.
  • Nobre FX, Muniz R, Martins F, Silva BO, de Matos JME, da Silva ER, Leyet Y. 2020. Calcium molybdate: Toxicity and genotoxicity assay in Drosophila melanogaster by SMART test. J Mol Struct, 1200: 127096.
  • NTP. 1997. National Toxicology Program: Molybdenum trioxide. NTP TR 462, NIH Pub. No. 95–3378.
  • Özkan B, Çavuşoğlu K, Yalçin E, Acar A. 2024. Investigation of multidirectional toxicity induced by high-dose molybdenum exposure with Allium test. Sci Rep, 14(1): 8651.
  • Palus J, Rydzynski K, Dziubaltowska E, Wyszynska K, Natarajan AT, Nilsson R. 2003. Genotoxic effects of occupational exposure to lead and cadmium. Mutat Res Genet Toxicol Environ Mutagen, 540(1): 19-28.
  • Raj SG, Rajitha V. 2023. Assessment of genotoxic instability markers in peripheral blood lymphocytes of breast cancer patients: a case control study. Mutat Res Genet Toxicol Environ Mutagen, 42: 1559-1563.
  • Rodrigues MA, Beaton-Green LA, Wilkins RC, Fenech MF. 2018. The potential for complete automated scoring of the cytokinesis block micronucleus cytome assay using imaging flow cytometry. Mutat Res Genet Toxicol Environ Mutagen, 836: 53-64.
  • Rossner P, Boffetta P, Ceppi M, Bonassi S, Smerhovsky Z, Landa K, Šrám RJ. 2005. Chromosomal aberrations in lymphocytes of healthy subjects and risk of cancer. Environmental Health Perspectives, 113(5): 517-520.
  • Saber AT, Mortensen A, Szarek J, Koponen IK, Levin M, Jacobsen NR, Atluri R. 2015. Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition. Part Fibre Toxicol, 13(1): 37-57.
  • Sahoo D, Behera SP, Shakya J, Kaviraj B. 2022. Cost-effective synthesis of 2D molybdenum disulfide (MoS2) nanocrystals: An exploration of the influence on cellular uptake, cytotoxicity, and bio-imaging. Plos One, 17(1): e0260955.
  • Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, Quintana-Belmares R, García-Cuellar CM. 2022. Particulate matter (PM10) destabilizes mitotic spindle through downregulation of SETD2 in A549 lung cancer cells. Chemosphere, 295: 133900.
  • Santos J, Barreto A, Fernandes C, Silva ARR, Cardoso DN, Pinto E, Maria VL. 2023. A comprehensive ecotoxicity study of molybdenum disulfide nanosheets versus bulk form in soil organisms. Nanomaterials, 13(24): 3163.
  • Santovito A, Cervella P, Delpero M. 2014. Chromosomal damage in peripheral blood lymphocytes from nurses occupationally exposed to chemicals. Hum Exp Toxicol, 33(9): 897-903.
  • Schins RP, Knaapen AM. 2007. Genotoxicity of poorly soluble particles. Inhal Toxicol, 19: 189-198.
  • Shao XR, Wei XQ, Song X, Hao L Y, Cai XX, Zhang ZR, Lin YF. 2015. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif, 48(4): 465-474.
  • Sharma PK, Raghubanshi AS, Shah K. 2020. Examining dye degradation and antibacterial properties of organically induced α-MoO3 nanoparticles, their uptake and phytotoxicity in rice seedlings. Environ Nanotechnol Monit Manag, 14: 100315.
  • Sharma PK, Raghubanshi AS, Shah K. 2021. Examining the uptake and bioaccumulation of molybdenum nanoparticles and their effect on antioxidant activities in growing rice seedlings. Environ Sci Pollut Res, 28: 13439-13453.
  • Siddiqui MA, Saquib Q, Ahamed M, Farshori NN, Ahmad J, Wahab R, Pant AB. 2015. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929). Colloids Surf B Biointerfaces, 125: 73-81.
  • Sikder M, Wang J, Poulin BA, Tfaily MM, Baalousha M. 2020. Nanoparticle size and natural organic matter composition determine aggregation behavior of polyvinylpyrrolidone coated platinum nanoparticles. Environ Sci Nano, 7(11): 3318-3332.
  • Singh AV, Panchal D, Sharma A, Nandanwar C, Kumar MS, Pal S, Naoghare PK. 2024. Dispersion behaviour of molybdenum disulfide (MoS2) nanosheets in different exposure media and determination of its toxicity using in-vitro and in-silico approaches. Appl Mater Today, 36: 102023.
  • Singh NP, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res, 175(1): 184-191.
  • Sobańska Z, Domeradzka-Gajda K, Szparaga M, Grobelny J, Tomaszewska E, Ranoszek-Soliwoda K, Stępnik M. 2020a. Comparative analysis of biological effects of molybdenum (IV) sulfide in the form of nano-and microparticles on human hepatoma HepG2 cells grown in 2D and 3D models. In Vitro Toxicol, 68: 104931.
  • Sobańska Z, Sitarek K, Gromadzińska J, Świercz R, Szparaga M, Domeradzka-Gajda K, Stępnik M. 2020b. Assessment of acute toxicological effects of molybdenum (IV) disulfide nano-and microparticles after single intratracheal administration in rats. Sci Total Environ, 742: 140545.
  • Sobańska Z, Sitarek K, Gromadzińska J, Świercz R, Szparaga M, Domeradzka‐Gajda K, Stępnik M. 2023. Biological effects of molybdenum (IV) sulfide nanoparticles and microparticles in the rat after repeated intratracheal administration. J Appl Toxicol. 44: 595-608.
  • Sørli, J.B., Jensen, A.C., Mortensen, A., Szarek, J., Gutierrez, C.A., Givelet, L., Hadrup, N. 2023. Pulmonary toxicity of molybdenum disulphide after inhalation in mice. Toxicology, 447: 153428. https://doi.org/10.1016/j.tox.2023.153428
  • Struys I, Verscheure E, Lenaerts L, Amant F, Godderis L, Ghosh M. 2023. Characterization of the genotoxic profile of antineoplastic drugs using the cytokinesis-block micronucleus cytome assay. Environ Toxicol Pharmacol, 97: 104036.
  • Sun K, White JC, He E, Van Gestel CA, Qiu H. 2023. Surface defects regulate the in Vivo bioenergetic response of earthworm Eisenia fetida coelomocytes to molybdenum disulfide nanosheets. ACS Nano, 17(3): 2639-2652.
  • Terpilowska S, Siwicki AK. 2018. Interactions between chromium (III) and iron (III), molybdenum (III) or nickel (II): Cytotoxicity, genotoxicity and mutagenicity studies. Chemosphere, 201: 780-789.
  • Titenko‐Holland N, Shao J, Zhang L, Xi L, Ngo H, Shang N, Smith MT. 1998. Studies on the genotoxicity of molybdenum salts in human cells in vitro and in mice in vivo. Environ Mol Mutagen, 32(3): 251-259.
  • Tung GK, Gandhi G. 2023. Baseline and oxidatively damaged DNA in end-stage renal disease patients on varied hemodialysis regimens: a comet assay assessment. Mol Cell Biochem, 479: 199-201.
  • Uboldi C, Urbán P, Gilliland D, Bajak E, Valsami-Jones E, Ponti J, Rossi F. 2016. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicol in Vitro, 31: 137-145.
  • Vazquez-Muñoz R, Bogdanchikova N, Huerta-Saquero A. 2020. Beyond the nanomaterials approach: Influence of culture conditions on the stability and antimicrobial activity of silver nanoparticles. ACS Omega, 5(44): 28441-28451.
  • Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. 2023. Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications. Cancer Metastasis Rev, 42(3): 601-627.
  • Vodenkova S, Polivkova Z, Musak L, Smerhovsky Z, Zoubkova H, Sytarova S, Svoboda M. 2015. Structural chromosomal aberrations as potential risk markers in incident cancer patients. Mutagenesis, 30(4): 557-563.
  • Wang CW, Liang C, Yeh HJ. 2016. Aquatic acute toxicity assessments of molybdenum (+ VI) to Daphnia magna. Chemosphere, 147: 82-87.
  • Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, AK. 2021. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater, 6(11): 4209-4242.
  • Wang S, Li K, Chen Y, Chen H, Ma M, Feng J, Shi J. 2015a. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials, 39: 206-217.
  • Wang X, Mansukhani ND, Guiney LM, Ji Z, Chang CH, Wang M, Nel AE. 2015b. Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung. Small, 11(38): 5079-5087.
  • Xing Y, Cai, Cheng J, Xu X. 2020. Applications of molybdenum oxide nanomaterials in the synergistic diagnosis and treatment of tumor. Appl Nanosci, 10(7): 2069-2083.
  • Yadav U, Singh V, Mishra H, Saxena PS, Srivastava A. 2021. Evaluation of in vitro and in vivo toxicity of pristine molybdenum disulphide nanosheets in Swiss albino mice. BioRxiv, 2021: 05.
  • Yüzbaşıoğlu D, Çelik M, Yılmaz S, Ünal F, Aksoy H. 2006. Clastogenicity of the fungicide afugan in cultured human lymphocytes. Mutat Res Genet Toxicol Environ Mutagen, 604(1): 53-59.
  • Zeng J, Hills SA, Ozono E, Diffley JF. 2023. Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication. Cell, 186(3): 528-542.
  • Zhou Z, Wang Y, Peng F, Meng F, Zha J, Ma L, Tan C. 2022. Intercalation‐Activated Layered MoO3 Nanobelts as Biodegradable Nanozymes for Tumor‐Specific Photo‐Enhanced Catalytic Therapy. Angewandte Chemi, 134(16): e202115939.

Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide

Yıl 2025, Cilt: 8 Sayı: 1, 75 - 93, 15.01.2025
https://doi.org/10.34248/bsengineering.1542181

Öz

Nanoparticles (NPs) and bulk forms of MoO3 and MoS2 (0.1, 1, 10, 100 µg/mL) were investigated by chromosome aberrations, CBMN-Cyt and comet assay in human lymphocytes for the first time. This study compared both MoO3 and MoS2 and their NPs and bulk forms. Both NP and bulk forms of MoO3 and MoS2 did not cause an increase in the frequency of abnormal cell and CA/Cell compared to the control. While both NPs and bulk forms of MoS2 significantly increased the micronucleus frequency, MoO3 did not cause an increase. This increase was slightly higher in MoS2 NPs than in their bulk form. According to our comet assay results, both NPs and bulk forms of the MoO3 and MoS2 significantly increased the DNA damage at all concentrations. Both MoO3 and MoS2 significantly decreased MI. Neither MoO3 nor MoS2 caused a significant variation in NDI, CBPI, % cytostasis, NPB, and NBUD frequency compared to the negative control. Both particles were also characterized physicochemically. Our results revealed that MoO3 and MoS2 may have weak genotoxic and cytotoxic effects. Therefore, the toxicity potential of these particles and their underlying mechanisms for safer usage need to be investigated in more detail by other in vivo and in vitro genotoxicity and cytotoxicity tests.

Etik Beyan

This research was approved by the Clinical Research Ethics Committee of the Faculty of Medicine at Gazi University (Approved Date: 18/10/2021; protocol no: 07; modified format 27/12/2021; No: 240).

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

This study is based on Nur Korkmaz's doctoral thesis. The supervisor of this thesis is Fatma Ünal.

Kaynakça

  • Akbas E, Unal F, Yuzbasioglu D. 2022. Genotoxic effects of gadobutrol and gadoversetamide active substances used in magnetic resonance imaging in human peripheral lymphocytes in vitro. Drug Chem Toxicol, 45(6): 2471-2482.
  • Akhondipour M, Faghihi Zarandi A, Amirri A, Gommnami N, Vazirinejad R. 2018. Studying the toxicity of molybdenum trioxide nanoparticles in male Wister rats. J Occup Health Epidemiol, 7(4): 233-239.
  • Anh Tran T, Krishnamoorthy K, Song, YW, Cho SK, Kim SJ. 2014. Toxicity of nano molybdenum trioxide toward invasive breast cancer cells. ACS Appl Mater Interfaces, 6(4): 2980-2986.
  • Appel JH, Li DO, Podlevsky JD, Debnath A, Green AA, Wang QH, Chae J. 2016. Low cytotoxicity and genotoxicity of two- dimensional MoS2 and WS2. ACS Biomater Sci Eng, 2(3): 361- 367.
  • Asadi F, Sadeghzadeh M, Jalilvand A, Nedaei K, Asadi Y, Heidari A. 2019. Effect of molybdenum trioxide nanoparticles on ovary function in female rats. J Adv Med Biomed Res, 27(121): 48-53.
  • Babayan EA, Bagramyan SB, Pogosyan AS. 1980. Effect of some chemical hazards involved in molybdenum production on the chromosome apparatus of experimental animals and humans. Gig T Prof Zabol, 33-36.
  • Bakhoum SF, Cantley LC. 2018. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell, 174(6): 1347-1360.
  • Bankoglu EE, Schuele C, Stopper H. 2021. Cell survival after DNA damage in the comet assay. Arch Toxicol, 95(12): 3803-3813.
  • Benhusein G, Mutch E, Aburawi S, Williams F. 2010. Genotoxic effect induced by hydrogen peroxide in human hepatoma cells using comet assay. Libyan J Med, 5(1): 4637.
  • Bhattacharjee S. 2016. DLS and zeta potential–what they are and what they are not?. J Cont Release, 235: 337-351.
  • Božinović K, Nestić D, Centa UG, Ambriović-Ristov A, Dekanić A, de Bisschop L, Majhen D. 2020. In-vitro toxicity of molybdenum trioxide nanoparticles on human keratinocytes. Toxicology, 444: 152564.
  • Burzlaff A, Beevers C, Pearce H, Lloyd, Klipsch K. 2017. New studies on the in vitro genotoxicity of sodium molybdate and their impact on the overall assessment of the genotoxicity of molybdenum substances. Regul Toxicol Pharmacol, 86: 279- 291.
  • Chen T, Zou H. Wu X, Liu C, Situ B, Zheng L, Yang G. 2018. Nanozymatic antioxidant system based on MoS2 nanosheets. ACS Appl Mater Interfaces, 10(15): 12453-12462.
  • Clogston JD, Patri AK. 2011. Zeta potential measurement. In: McNeil S, editors. Characterization of nanoparticles intended for drug delivery: Methods in molecular biology. Humana Press, Totowa, New Jersey, USA, pp: 63-70.
  • Collins A, Møller P, Gajski G, Vodenková S, Abdulwahed A, Anderson D, Azqueta A. 2023. Measuring DNA modifications with the comet assay: A compendium of protocols. Nat Protoc, 18(3): 929-989.
  • Collins AR. 2004. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol, 26(3): 249-261.
  • Cui SG, Zhang YL, Guo HW, Zhou BH, Tian EJ, Zhao J, Wang HW. 2023. Molybdenum-induced apoptosis of splenocytes and thymocytes and changes of peripheral blood in sheep. Biol Trace Elem Res, 201: 1-11.
  • Daley B, Doherty AT, Fairman B, Case CP. 2004. Wear debris from hip or knee replacements causes chromosomal damage in human cells in tissue culture. J Bone Joint Surg Br, 86(4): 598- 606.
  • Decker S, Kunisch E, Moghaddam A, Renkawitz T, Westhauser F. 2021. Molybdenum trioxide enhances viability, osteogenic differentiation and extracellular matrix formation of human bone marrow-derived mesenchymal stromal cells. J Trace Elem Med Biol, 68: 126827.
  • Desai ML, Jha S, Basu H, Saha S, Singhal RK, Kailasa SK. 2020. Simple hydrothermal approach for synthesis of fluorescent molybdenum disulfide quantum dots: Sensing of Cr3+ ion and cellular imaging. Mater Sci Eng C, 111: 110778.
  • Diamantino TC, Guilhermino L, Almeida E, Soares AM. 2000. Toxicity of sodium molybdate and sodium dichromate to Daphnia magna Straus evaluated in acute, chronic, and acetylcholinesterase inhibition tests. Ecotoxicol Environ Saf, 45(3): 253-259.
  • Duan G, Wen L, Sun X, Wei Z, Duan R, Zeng J, Gao M. 2022. Healing diabetic ulcers with MoO3− X nanodots possessing intrinsic ROS‐scavenging and bacteria‐killing capacities. Small, 18(10): 2107137.
  • Duijf PH, Nanayakkara D, Nones K, Srihari S, Kalimutho M, Khanna KK. 2019. Mechanisms of genomic instability in breast cancer. Trends Mol Med, 25(7): 595-611.
  • Duthie SJ, Collins AR. 1997. The influence of cell growth, detoxifying enzymes and DNA repair on hydrogen peroxide-mediated DNA damage (measured using the comet assay) in human cells. Free Radic Biol Med, 22(4): 717-724.
  • Evans HJ. 1984. Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. In: Kilbey B J, Legator M, Nichols W, Ramel C editors, Handbook of mutagenicity test procedures, Elsevier Sciences, Amsterdam, the Netherlands, pp: 405-424.
  • Farabaugh CS, Doak S, Roy S, Elespuru R. 2023. In vitro micronucleus assay: Method for assessment of nanomaterials using cytochalasin B. Front Toxicol, 5:1171960.
  • Fenech M. 2000. The in vitro micronucleus technique. Mutat Res, 455(1): 81-95.
  • Fenech M. 2007. Cytokinesis-block micronucleus cytome assay. Nat Protoc, 2(5): 1084-1104.
  • Fenech M. 2020. Cytokinesis-block micronucleus cytome assay evolution into a more comprehensive method to measure chromosomal instability. Genes, 11(10): 1203.
  • Frawley LE, Orr-Weaver TL. 2015. Polyploidy. Curr Biol, 25(9): R353-R358.
  • García-Carpintero S, González VJ, Frontiñán-Rubio J, Esteban-Arranz A, Vázquez E, Durán-Prado M. 2023. Screening the micronucleus assay for reliable estimation of the genotoxicity of graphene and other 2D materials. Carbon, 215: 118426.
  • Gibson DP, Brauninger R, Shaffi HS, Kerckaert GA, LeBoeuf RA, Isfort RJ, Aardema MJ. 1997. Induction of micronuclei in Syrian hamster embryo cells: comparison to results in the SHE cell transformation assay for National Toxicology Program test chemicals. Mutat Res Genet Toxicol Environ Mutagen, 392(1-2): 61-70.
  • Gopal R, Sharma YK, Shukla AK. 2016. Effect of molybdenum stress on growth, yield and seed quality in black gram. J Plant Nutr, 39(4): 463-469.
  • Helleday T, Lo J, van Gent DC, Engelward BP. 2007. DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair, 6(7): 923-935.
  • Indrakumar J, Korrapati PS. 2020. Steering efficacy of nano molybdenum towards cancer: mechanism of action. Biol Trace Elem Res, 194: 121-134.
  • Jiang S, Wei J, Li N, Wang Z, Zhang Y, Xu R, Li Y. 2022. The UBP14-CDKB1; 1-CDKG2 cascade controls endoreduplication and cell growth in Arabidopsis. Plant Cell, 34(4): 1308-1325.
  • Joo SH, Zhao D. 2017. Environmental dynamics of metal oxide nanoparticles in heterogeneous systems: A review. J Hazard Mater, 322: 29-47.
  • Kailasa SK, Patel MR, Koduru JR, Park TJ. 2024. Recent advances of molybdenum-based nanostructures for molecular and ionic species sensing and separation applications. Coord Chem Rev, 501, 215595.
  • Kalefetoğlu Macar T, Macar O, Yalçın E, Çavuşoğlu K. 2020. Resveratrol ameliorates the physiological, biochemical, cytogenetic, and anatomical toxicities induced by copper (II) chloride exposure in Allium cepa L. Environ Sci Pollut Res, 27: 657-667.
  • Kaur J, Kaur K, Pervaiz N, Mehta SK. 2021. Spherical MoO3 Nanoparticles for Photocatalytic Removal of Eriochrome Black T. ACS Appl Nano Mater, 4(11): 12766-12778.
  • Khangarot BS. 1991. Toxicity of metals to a freshwater tubificid worm Tubifex tubifex (Muller). Bull Environ Contam Toxicol, 46(6).
  • Kirsch-Volders M, Plas G, Elhajouji A, Lukamowicz M, Gonzalez L, Loock KV, Decordier I. 2011. The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol, 85(8): 873-899.
  • Kizilkaya D, Unal F, Beyzi E, Kulahci MB, Calis Ismetoglu G, Yuzbasioglu D, Suludere Z. 2023. Comparative investigation of iron oxide nanoparticles and microparticles using the in vitro bacterial reverse mutation and in vivo Allium chromosome aberration and comet assays. J Nanopart Res, 25(9): 173.
  • Kothaplamoottil Sivan S, Padinjareveetil AK, Padil VV, Pilankatta R, George B, Senan C, Varma RS. 2019. Greener assembling of MoO3 nanoparticles supported on gum arabic: cytotoxic effects and catalytic efficacy towards reduction of p-nitrophenol. Clean Technol Environ Policy, 21(8): 1549-1561.
  • Kumari J, Mangala P. 2022. Fabrication and characterization of molybdenum trioxide nanoparticles and their anticancer, antibacterial and antifungal activities. MJChem, 24(1): 36-53.
  • Ladon D, Doherty A, Newson R, Turner J, Bhamra M, Case C.P. 2004. Changes in metal levels and chromosome aberrations in the peripheral blood of patients after metal-on-metal hip arthroplasty. J Arthroplasty, 19(8): 78-83.
  • Li J, Guiney LM, Downing JR, Wang X, Chang CH, Jiang J, Xia T. 2021. Dissolution of 2D molybdenum disulfide generates differential toxicity among liver cell types compared to non‐toxic 2D boron nitride effects. Small, 17(25): 2101084.
  • Libalova H, Zavodna T, Margaryan H, Elzeinova F, Milcova A, Vrbova K, Rössner P. 2024. Differential DNA damage response and cell fate in human lung cells after exposure to genotoxic compounds. In Vitro Toxicol, 94: 105710.
  • Lorge E, Hayashi M, Albertini S, Kirkland D. 2008. Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test: I. Theoretical aspects. Mutat Res Genet Toxicol Environ Mutagen, 655(1-2): 1–3.
  • Lunardi CN, Gomes AJ, Rocha FS, De Tommaso J, Patience GS. 2021. Experimental methods in chemical engineering: Zeta potential. The Can J Chem Eng, 99(3): 627-639.
  • Macar O, Kalefetoğlu Macar T, Çavuşoğlu K, Yalçın E. 2020. Protective effects of anthocyanin-rich bilberry (Vaccinium myrtillus L.) extract against copper (II) chloride toxicity. Environ Sci Pollut Res, 27: 1428-1435.
  • Magdolenova Z, Collins A, Kumar A, Dhawan A, Stone V, Dusinska M. 2014. Mechanisms of genotoxicity. A review of in vitro and in vivo studies with engineered nanoparticles. Nanotoxicology, 8(3): 233-278.
  • Mamur S, Yüzbaşıoğlu D, Bülbül SN, Ünal F. 2022. Investigation of cyto-genotoxic effects of a food sweetener Acesulfame potassium. Food and Health, 8(4): 273-283.
  • Michalová V, Galdíková M, Holečková B, Koleničová S, Schwarzbacherová V. 2020. Micronucleus assay in environmental biomonitoring. Folia Vet, 64(2): 20-28.
  • Murdock RC, Braydich-Stolle L, Schrand AM, Schlager JJ, Hussain SM. 2008. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci, 101(2): 239-253.
  • Nefic H, Handzic I. 2013. The effect of age, sex, and lifestyle factors on micronucleus frequency in peripheral blood lymphocytes of the Bosnian population. Mutat Res Genet Toxicol Environ Mutagen, 753(1): 1-11.
  • Ngo LP, Kaushal S, Chaim IA, Mazzucato P, Ricciardi C, Samson LD, Engelward BP. 2021. CometChip analysis of human primary lymphocytes enables quantification of inter-individual differences in the kinetics of repair of oxidative DNA damage. Free Radic Biol Med, 174, 89-99.
  • Nishioka H. (1975). Mutagenic activities of metal compounds in bacteria. Mutat Res, 31(3):185-189.
  • Nobre FX, Muniz R, Martins F, Silva BO, de Matos JME, da Silva ER, Leyet Y. 2020. Calcium molybdate: Toxicity and genotoxicity assay in Drosophila melanogaster by SMART test. J Mol Struct, 1200: 127096.
  • NTP. 1997. National Toxicology Program: Molybdenum trioxide. NTP TR 462, NIH Pub. No. 95–3378.
  • Özkan B, Çavuşoğlu K, Yalçin E, Acar A. 2024. Investigation of multidirectional toxicity induced by high-dose molybdenum exposure with Allium test. Sci Rep, 14(1): 8651.
  • Palus J, Rydzynski K, Dziubaltowska E, Wyszynska K, Natarajan AT, Nilsson R. 2003. Genotoxic effects of occupational exposure to lead and cadmium. Mutat Res Genet Toxicol Environ Mutagen, 540(1): 19-28.
  • Raj SG, Rajitha V. 2023. Assessment of genotoxic instability markers in peripheral blood lymphocytes of breast cancer patients: a case control study. Mutat Res Genet Toxicol Environ Mutagen, 42: 1559-1563.
  • Rodrigues MA, Beaton-Green LA, Wilkins RC, Fenech MF. 2018. The potential for complete automated scoring of the cytokinesis block micronucleus cytome assay using imaging flow cytometry. Mutat Res Genet Toxicol Environ Mutagen, 836: 53-64.
  • Rossner P, Boffetta P, Ceppi M, Bonassi S, Smerhovsky Z, Landa K, Šrám RJ. 2005. Chromosomal aberrations in lymphocytes of healthy subjects and risk of cancer. Environmental Health Perspectives, 113(5): 517-520.
  • Saber AT, Mortensen A, Szarek J, Koponen IK, Levin M, Jacobsen NR, Atluri R. 2015. Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition. Part Fibre Toxicol, 13(1): 37-57.
  • Sahoo D, Behera SP, Shakya J, Kaviraj B. 2022. Cost-effective synthesis of 2D molybdenum disulfide (MoS2) nanocrystals: An exploration of the influence on cellular uptake, cytotoxicity, and bio-imaging. Plos One, 17(1): e0260955.
  • Santibáñez-Andrade M, Sánchez-Pérez Y, Chirino YI, Morales-Bárcenas R, Quintana-Belmares R, García-Cuellar CM. 2022. Particulate matter (PM10) destabilizes mitotic spindle through downregulation of SETD2 in A549 lung cancer cells. Chemosphere, 295: 133900.
  • Santos J, Barreto A, Fernandes C, Silva ARR, Cardoso DN, Pinto E, Maria VL. 2023. A comprehensive ecotoxicity study of molybdenum disulfide nanosheets versus bulk form in soil organisms. Nanomaterials, 13(24): 3163.
  • Santovito A, Cervella P, Delpero M. 2014. Chromosomal damage in peripheral blood lymphocytes from nurses occupationally exposed to chemicals. Hum Exp Toxicol, 33(9): 897-903.
  • Schins RP, Knaapen AM. 2007. Genotoxicity of poorly soluble particles. Inhal Toxicol, 19: 189-198.
  • Shao XR, Wei XQ, Song X, Hao L Y, Cai XX, Zhang ZR, Lin YF. 2015. Independent effect of polymeric nanoparticle zeta potential/surface charge, on their cytotoxicity and affinity to cells. Cell Prolif, 48(4): 465-474.
  • Sharma PK, Raghubanshi AS, Shah K. 2020. Examining dye degradation and antibacterial properties of organically induced α-MoO3 nanoparticles, their uptake and phytotoxicity in rice seedlings. Environ Nanotechnol Monit Manag, 14: 100315.
  • Sharma PK, Raghubanshi AS, Shah K. 2021. Examining the uptake and bioaccumulation of molybdenum nanoparticles and their effect on antioxidant activities in growing rice seedlings. Environ Sci Pollut Res, 28: 13439-13453.
  • Siddiqui MA, Saquib Q, Ahamed M, Farshori NN, Ahmad J, Wahab R, Pant AB. 2015. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929). Colloids Surf B Biointerfaces, 125: 73-81.
  • Sikder M, Wang J, Poulin BA, Tfaily MM, Baalousha M. 2020. Nanoparticle size and natural organic matter composition determine aggregation behavior of polyvinylpyrrolidone coated platinum nanoparticles. Environ Sci Nano, 7(11): 3318-3332.
  • Singh AV, Panchal D, Sharma A, Nandanwar C, Kumar MS, Pal S, Naoghare PK. 2024. Dispersion behaviour of molybdenum disulfide (MoS2) nanosheets in different exposure media and determination of its toxicity using in-vitro and in-silico approaches. Appl Mater Today, 36: 102023.
  • Singh NP, McCoy MT, Tice RR, Schneider EL. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res, 175(1): 184-191.
  • Sobańska Z, Domeradzka-Gajda K, Szparaga M, Grobelny J, Tomaszewska E, Ranoszek-Soliwoda K, Stępnik M. 2020a. Comparative analysis of biological effects of molybdenum (IV) sulfide in the form of nano-and microparticles on human hepatoma HepG2 cells grown in 2D and 3D models. In Vitro Toxicol, 68: 104931.
  • Sobańska Z, Sitarek K, Gromadzińska J, Świercz R, Szparaga M, Domeradzka-Gajda K, Stępnik M. 2020b. Assessment of acute toxicological effects of molybdenum (IV) disulfide nano-and microparticles after single intratracheal administration in rats. Sci Total Environ, 742: 140545.
  • Sobańska Z, Sitarek K, Gromadzińska J, Świercz R, Szparaga M, Domeradzka‐Gajda K, Stępnik M. 2023. Biological effects of molybdenum (IV) sulfide nanoparticles and microparticles in the rat after repeated intratracheal administration. J Appl Toxicol. 44: 595-608.
  • Sørli, J.B., Jensen, A.C., Mortensen, A., Szarek, J., Gutierrez, C.A., Givelet, L., Hadrup, N. 2023. Pulmonary toxicity of molybdenum disulphide after inhalation in mice. Toxicology, 447: 153428. https://doi.org/10.1016/j.tox.2023.153428
  • Struys I, Verscheure E, Lenaerts L, Amant F, Godderis L, Ghosh M. 2023. Characterization of the genotoxic profile of antineoplastic drugs using the cytokinesis-block micronucleus cytome assay. Environ Toxicol Pharmacol, 97: 104036.
  • Sun K, White JC, He E, Van Gestel CA, Qiu H. 2023. Surface defects regulate the in Vivo bioenergetic response of earthworm Eisenia fetida coelomocytes to molybdenum disulfide nanosheets. ACS Nano, 17(3): 2639-2652.
  • Terpilowska S, Siwicki AK. 2018. Interactions between chromium (III) and iron (III), molybdenum (III) or nickel (II): Cytotoxicity, genotoxicity and mutagenicity studies. Chemosphere, 201: 780-789.
  • Titenko‐Holland N, Shao J, Zhang L, Xi L, Ngo H, Shang N, Smith MT. 1998. Studies on the genotoxicity of molybdenum salts in human cells in vitro and in mice in vivo. Environ Mol Mutagen, 32(3): 251-259.
  • Tung GK, Gandhi G. 2023. Baseline and oxidatively damaged DNA in end-stage renal disease patients on varied hemodialysis regimens: a comet assay assessment. Mol Cell Biochem, 479: 199-201.
  • Uboldi C, Urbán P, Gilliland D, Bajak E, Valsami-Jones E, Ponti J, Rossi F. 2016. Role of the crystalline form of titanium dioxide nanoparticles: Rutile, and not anatase, induces toxic effects in Balb/3T3 mouse fibroblasts. Toxicol in Vitro, 31: 137-145.
  • Vazquez-Muñoz R, Bogdanchikova N, Huerta-Saquero A. 2020. Beyond the nanomaterials approach: Influence of culture conditions on the stability and antimicrobial activity of silver nanoparticles. ACS Omega, 5(44): 28441-28451.
  • Verma J, Warsame C, Seenivasagam RK, Katiyar NK, Aleem E, Goel S. 2023. Nanoparticle-mediated cancer cell therapy: Basic science to clinical applications. Cancer Metastasis Rev, 42(3): 601-627.
  • Vodenkova S, Polivkova Z, Musak L, Smerhovsky Z, Zoubkova H, Sytarova S, Svoboda M. 2015. Structural chromosomal aberrations as potential risk markers in incident cancer patients. Mutagenesis, 30(4): 557-563.
  • Wang CW, Liang C, Yeh HJ. 2016. Aquatic acute toxicity assessments of molybdenum (+ VI) to Daphnia magna. Chemosphere, 147: 82-87.
  • Wang J, Sui L, Huang J, Miao L, Nie Y, Wang K, AK. 2021. MoS2-based nanocomposites for cancer diagnosis and therapy. Bioact Mater, 6(11): 4209-4242.
  • Wang S, Li K, Chen Y, Chen H, Ma M, Feng J, Shi J. 2015a. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials, 39: 206-217.
  • Wang X, Mansukhani ND, Guiney LM, Ji Z, Chang CH, Wang M, Nel AE. 2015b. Differences in the toxicological potential of 2D versus aggregated molybdenum disulfide in the lung. Small, 11(38): 5079-5087.
  • Xing Y, Cai, Cheng J, Xu X. 2020. Applications of molybdenum oxide nanomaterials in the synergistic diagnosis and treatment of tumor. Appl Nanosci, 10(7): 2069-2083.
  • Yadav U, Singh V, Mishra H, Saxena PS, Srivastava A. 2021. Evaluation of in vitro and in vivo toxicity of pristine molybdenum disulphide nanosheets in Swiss albino mice. BioRxiv, 2021: 05.
  • Yüzbaşıoğlu D, Çelik M, Yılmaz S, Ünal F, Aksoy H. 2006. Clastogenicity of the fungicide afugan in cultured human lymphocytes. Mutat Res Genet Toxicol Environ Mutagen, 604(1): 53-59.
  • Zeng J, Hills SA, Ozono E, Diffley JF. 2023. Cyclin E-induced replicative stress drives p53-dependent whole-genome duplication. Cell, 186(3): 528-542.
  • Zhou Z, Wang Y, Peng F, Meng F, Zha J, Ma L, Tan C. 2022. Intercalation‐Activated Layered MoO3 Nanobelts as Biodegradable Nanozymes for Tumor‐Specific Photo‐Enhanced Catalytic Therapy. Angewandte Chemi, 134(16): e202115939.
Toplam 100 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Genetik (Diğer)
Bölüm Research Articles
Yazarlar

Nur Korkmaz 0000-0003-4969-2872

Fatma Ünal 0000-0002-7468-6186

Ece Akbaş 0000-0002-4978-3638

Gökçe Çalış İsmetoğlu 0000-0002-3369-6193

Deniz Yüzbaşıoğlu 0000-0003-2756-7712

Proje Numarası -
Yayımlanma Tarihi 15 Ocak 2025
Gönderilme Tarihi 3 Eylül 2024
Kabul Tarihi 22 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Korkmaz, N., Ünal, F., Akbaş, E., Çalış İsmetoğlu, G., vd. (2025). Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide. Black Sea Journal of Engineering and Science, 8(1), 75-93. https://doi.org/10.34248/bsengineering.1542181
AMA Korkmaz N, Ünal F, Akbaş E, Çalış İsmetoğlu G, Yüzbaşıoğlu D. Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide. BSJ Eng. Sci. Ocak 2025;8(1):75-93. doi:10.34248/bsengineering.1542181
Chicago Korkmaz, Nur, Fatma Ünal, Ece Akbaş, Gökçe Çalış İsmetoğlu, ve Deniz Yüzbaşıoğlu. “Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide”. Black Sea Journal of Engineering and Science 8, sy. 1 (Ocak 2025): 75-93. https://doi.org/10.34248/bsengineering.1542181.
EndNote Korkmaz N, Ünal F, Akbaş E, Çalış İsmetoğlu G, Yüzbaşıoğlu D (01 Ocak 2025) Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide. Black Sea Journal of Engineering and Science 8 1 75–93.
IEEE N. Korkmaz, F. Ünal, E. Akbaş, G. Çalış İsmetoğlu, ve D. Yüzbaşıoğlu, “Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide”, BSJ Eng. Sci., c. 8, sy. 1, ss. 75–93, 2025, doi: 10.34248/bsengineering.1542181.
ISNAD Korkmaz, Nur vd. “Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide”. Black Sea Journal of Engineering and Science 8/1 (Ocak 2025), 75-93. https://doi.org/10.34248/bsengineering.1542181.
JAMA Korkmaz N, Ünal F, Akbaş E, Çalış İsmetoğlu G, Yüzbaşıoğlu D. Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide. BSJ Eng. Sci. 2025;8:75–93.
MLA Korkmaz, Nur vd. “Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide”. Black Sea Journal of Engineering and Science, c. 8, sy. 1, 2025, ss. 75-93, doi:10.34248/bsengineering.1542181.
Vancouver Korkmaz N, Ünal F, Akbaş E, Çalış İsmetoğlu G, Yüzbaşıoğlu D. Genotoxic and Cytotoxic Effects of Nanoparticle and Bulk Forms of Molybdenum Trioxide and Molybdenum Disulfide. BSJ Eng. Sci. 2025;8(1):75-93.

                                                24890