Araştırma Makalesi
BibTex RIS Kaynak Göster

Arachis hypogaea Bitkisi Kullanılarak Yeşil Sentezi Gerçekleştirilen Gümüş Nanopartiküllerin Antimikrobiyal ve Anti Quorum Sensing Aktivitelerinin Tespiti

Yıl 2025, Cilt: 8 Sayı: 2, 298 - 309, 15.03.2025
https://doi.org/10.34248/bsengineering.1604007

Öz

Yer fıstığı (Arachis hypogaea L.), ağırlıklı olarak Akdeniz bölgesi olmak üzere Türkiye ve Amerika Birleşik Devletleri'nde dikkate değer bir öneme sahip, dünya çapında yetiştirilen önemli bir tarım ürünüdür. Bu araştırmada Osmaniye ilinden elde edilen yer fıstığı, araştırma çalışmalarımızın ana malzemesi olarak kullanılmıştır. Nanopartiküller, çağdaş bilimsel araştırmalar içinde çeşitli disiplinlerde kullanılmaktadır. Bu alanlardaki en kritik araştırmalar arasında, özellikle çeşitli mikroorganizmalar üzerindeki ölümcül etkileri nedeniyle antibiyotiklerin incelenmesi bulunmaktadır. Bu çalışmada A. hypogaea bitkisine ait tohum ve kabuklar ile gümüş nanopartiküllerin (AgNP) yeşil sentezi gerçekleştirilmiştir. Sentezlenen AgNP’ler; antimikrobiyal ve anti-quorum sensing aktivite açısından analiz edilmiştir. Antimikrobiyal aktivite analizi amacıyla çalışmada 22 adet patojen mikroorganizma kullanılmıştır. Sonuç olarak; AgNP’lerin antimikrobiyal aktivitelerinde istatistiksel açıdan anlamlı farklar tespit edilmiştir (P0,05). Çalışmada kullanılan Chromobacterium violaceum, AgNP’lerin en yüksek antimikrobiyal aktivite gösterdiği mikroorganizma olmuştur. AgNP’lerin C. violaceum üzerinde göstermiş oldukları antimikrobiyal etki, anti-quorum sensing aktiviteninde olduğunu sonuçlarda göstermiştir. Fıstık ve kabuk ile yeşil sentezi gerçekleştirilen AgNP’ler, Anti-QS açısından istatistiksel olarak anlamlı farklara da neden olmuştur (P0,05). 2,5 μl/ml konsantrasyondaki yaş, çiğ ve kavrulmuş yer fıstığı tohumu ile yeşil sentezi gerçekleştirilmiş AgNP’lerde zon çapları sırasıyla 19,2 mm, 18,6 mm, 19,4 mm iken, yer fıstığı kabuğu ile yeşil sentezi gerçekleştirilmiş AgNP’lerde sırasıyla 16,8 mm, 16,8 mm, 14,8 mm’dir. Özellikle mikroorganizmaların antibiyotiklere ve diğer terapötik ajanlara karşı önemli ölçüde yüksek direnç seviyeleri sergilediği gerçeği ışığında hem ekonomik olarak uygulanabilir hem de etkili olan bu malzemeler ilaç sektöründe ve diğer alanlarda dikkate alınmayı hak etmektedir.

Etik Beyan

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

Destekleyen Kurum

Herhangi bir kurum tarafından maddi olarak desteklenmemiştir.

Teşekkür

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

Kaynakça

  • Adonizio AL, Downum K, Bennett BC, Mathee K. 2006. Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol, 105(3): 427-435.
  • Anju S, Sarada J. 2016. Quorum sensing inhibiting activity of silver nanoparticles synthesized by Bacillus isolate. Int J Pharm Biol Sci, 6: 47-53.
  • Chopra I. 2007. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother, 59: 587-590.
  • Gao M, Teplitski M, Robinson JB, Bauer WD. 2003. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Amer Phytopathol Soc, 16: 827-834.
  • Garole VJ, Garole DJ, Tetgure SR, Choudhary BC, Borse AU. 2018. Biosynthesis of silver nanoparticles using ficus racemosa latex and ıts antimicrobial activity. World J Pharmaceut Res, 2018: 1385-1400.
  • Gemmell CG, Edwards DI, Frainse AP. 2006. Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK. J Antimicrob Chemother, 57: 589-608.
  • Horikoshi S, Serpone N. 2013. Introduction to nanoparticles. In: Horikoshi S, Serpone N, editors. Microwaves in nanoparticle synthesis: Fundamentals and applications. Wiley-VCH Verlag GmbH Co, Weinheim, Germany, pp: 57.
  • Isanga J, Zhang GN. 2007. Biologically active components and nutraceuticals in peanuts and related products: Review. Food Rev Int, 2007: 123-140.
  • Jagtap UB, Bapat VA. 2013. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity, Ind Crop Prod, 46: 132.
  • Kim JA, Åberg C, de Cárcer G, Malumbres M, Salvati A, Dawson KA. 2013. Low dose of amino-modified nanoparticles induces cell cycle arrest. ACS Nano, 9: 7483-7494.
  • Kumar D, Kumari J, Pakrashi S, Dalai S, Raichur AM, Raichur AM, Sastry TP, Mandal AB, Chandrasekaran N, Mukherjee A. 2014. Qualitative toxicity assessment of silver nanoparticles on the fresh water bacterial isolates and consortium at low level of exposure concentration. Ecotoxicol Environ Safety, 108: 152-160.
  • Liu J, Wang Z, Liu FD, Kane AB, Hurt RH. 2012. Chemical transformations of nanosilver in biological environments. ACS Nano, 6: 9887-9899.
  • Lopes RM, Agostini-Costa TS, Gimenes MA, Silveira D. 2011. Chemical composition and biological activities of Arachis species. J Agri Food Chem, 59: 4321-4330.
  • Padmapriya G, Muthukumaravel A, Ashok K, Senthil J, Babu M. 2020. Antimicrobial activity of green synthesized silver nanoparticles room sprayer from Arachis hypogaea root nodules. Eur J Molec Clin Medic, 2: 2639-2646.
  • Qais FA, Shafiq A, Ahmad I, Husain F. 2020. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against Gram negative bacterial pathogens, Microb Pathogenesis, 144: 104172.
  • Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biot Adv, 27: 76-83.
  • Rodriguez A, Rueksomtawin Kildegaard K, Li M, Borodina I, Nielsen J, Nielsen J. 2015. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metabolic Eng, 31: 181-188.
  • Saha N, Trivedi P, Gupta SD. 2016. Surface plasmon resonance (SPR) based optimization of biosynthesis of silver nanoparticles from rhizome extract of curculigo orchioides gaertn and its antioxidant potential. J Clust Sci, 27: 1893-1912.
  • Salini R, Pandian SK. 2015. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathog Dis, 73(6): ffv038.
  • Sankaranarayanan A, Govindarasu M, Gopalu K, Shine K, Naiyf S, Jamal M, Denis K. 2016. Green synthesis of silver nanoparticles using Arachis hypogaea (ground nut) Root extract for antibacterial and clinical applications. J Clust Sci, 28: 995-1008.
  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. 2015. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol, 99: 4579-4593.
  • Yang N, Li WH. 2013. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics, Ind Crop Prod, 48: 81.
  • Zhang SB, Lu QY, Yang H, Li Y, Wang S. 2011. Aqueous enzymatic extraction of oil and protein hydrolysates from roasted peanut seeds. J Amer Oil Chem Soc, 88: 727-732.

Detection of Antimicrobial and Anti-Quorum Sensing Activities of Silver Nanoparticles Performed by Green Synthesis Using the Arachis hypogaea Plant

Yıl 2025, Cilt: 8 Sayı: 2, 298 - 309, 15.03.2025
https://doi.org/10.34248/bsengineering.1604007

Öz

Peanuts (Arachis hypogaea L.) are an important agricultural crop grown worldwide, with notable significance in Türkiye and the United States, particularly in the Mediterranean region. In this research, peanuts obtained from Osmaniye province were used as the main material for our studies. Nanoparticles are utilized in a variety of disciplines within contemporary scientific research. Among the most critical research areas is the study of antibiotics, especially due to their lethal effects on various microorganisms. In this study, the green synthesis of silver nanoparticles (AgNPs) from the seeds and shells of the A. hypogaea plant was carried out. Synthesized AgNPs were analyzed for antimicrobial and anti-quorum sensing activity. For the purpose of antimicrobial activity analysis, 22 pathogenic microorganisms were used in the study. As a result, statistically significant differences were found in the antimicrobial activity of AgNPs (P<0.05). Chromobacterium violaceum, used in the study, was the microorganism in which AgNPs showed the highest antimicrobial activity. The antimicrobial effect of AgNPs on C. violaceum was demonstrated to be related to anti-quorum sensing activity. AgNPs synthesized from peanut seeds and shells also caused statistically significant differences in terms of anti-QS (P<0.05). In AgNPs synthesized from green and raw peanut seeds at a concentration of 2.5 μl/ml, the zone diameters were 19.2 mm, 18.6 mm, and 19.4 mm, respectively, whereas for AgNPs synthesized from green peanuts with shells, the diameters were 16.8 mm, 16.8 mm, and 14.8 mm, respectively. Especially in light of the fact that microorganisms exhibit significantly high levels of resistance to antibiotics and other therapeutic agents, these materials, which are both economically viable and effective, deserve consideration in the pharmaceutical industry and other fields.

Etik Beyan

Since this study did not involve any studies on animals or humans, ethics committee approval was not obtained.

Destekleyen Kurum

It was not financially supported by any institution.

Kaynakça

  • Adonizio AL, Downum K, Bennett BC, Mathee K. 2006. Anti-quorum sensing activity of medicinal plants in southern Florida. J Ethnopharmacol, 105(3): 427-435.
  • Anju S, Sarada J. 2016. Quorum sensing inhibiting activity of silver nanoparticles synthesized by Bacillus isolate. Int J Pharm Biol Sci, 6: 47-53.
  • Chopra I. 2007. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother, 59: 587-590.
  • Gao M, Teplitski M, Robinson JB, Bauer WD. 2003. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Amer Phytopathol Soc, 16: 827-834.
  • Garole VJ, Garole DJ, Tetgure SR, Choudhary BC, Borse AU. 2018. Biosynthesis of silver nanoparticles using ficus racemosa latex and ıts antimicrobial activity. World J Pharmaceut Res, 2018: 1385-1400.
  • Gemmell CG, Edwards DI, Frainse AP. 2006. Guidelines for the prophylaxis and treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections in the UK. J Antimicrob Chemother, 57: 589-608.
  • Horikoshi S, Serpone N. 2013. Introduction to nanoparticles. In: Horikoshi S, Serpone N, editors. Microwaves in nanoparticle synthesis: Fundamentals and applications. Wiley-VCH Verlag GmbH Co, Weinheim, Germany, pp: 57.
  • Isanga J, Zhang GN. 2007. Biologically active components and nutraceuticals in peanuts and related products: Review. Food Rev Int, 2007: 123-140.
  • Jagtap UB, Bapat VA. 2013. Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity, Ind Crop Prod, 46: 132.
  • Kim JA, Åberg C, de Cárcer G, Malumbres M, Salvati A, Dawson KA. 2013. Low dose of amino-modified nanoparticles induces cell cycle arrest. ACS Nano, 9: 7483-7494.
  • Kumar D, Kumari J, Pakrashi S, Dalai S, Raichur AM, Raichur AM, Sastry TP, Mandal AB, Chandrasekaran N, Mukherjee A. 2014. Qualitative toxicity assessment of silver nanoparticles on the fresh water bacterial isolates and consortium at low level of exposure concentration. Ecotoxicol Environ Safety, 108: 152-160.
  • Liu J, Wang Z, Liu FD, Kane AB, Hurt RH. 2012. Chemical transformations of nanosilver in biological environments. ACS Nano, 6: 9887-9899.
  • Lopes RM, Agostini-Costa TS, Gimenes MA, Silveira D. 2011. Chemical composition and biological activities of Arachis species. J Agri Food Chem, 59: 4321-4330.
  • Padmapriya G, Muthukumaravel A, Ashok K, Senthil J, Babu M. 2020. Antimicrobial activity of green synthesized silver nanoparticles room sprayer from Arachis hypogaea root nodules. Eur J Molec Clin Medic, 2: 2639-2646.
  • Qais FA, Shafiq A, Ahmad I, Husain F. 2020. Green synthesis of silver nanoparticles using Carum copticum: Assessment of its quorum sensing and biofilm inhibitory potential against Gram negative bacterial pathogens, Microb Pathogenesis, 144: 104172.
  • Rai M, Yadav A, Gade A. 2009. Silver nanoparticles as a new generation of antimicrobials. Biot Adv, 27: 76-83.
  • Rodriguez A, Rueksomtawin Kildegaard K, Li M, Borodina I, Nielsen J, Nielsen J. 2015. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metabolic Eng, 31: 181-188.
  • Saha N, Trivedi P, Gupta SD. 2016. Surface plasmon resonance (SPR) based optimization of biosynthesis of silver nanoparticles from rhizome extract of curculigo orchioides gaertn and its antioxidant potential. J Clust Sci, 27: 1893-1912.
  • Salini R, Pandian SK. 2015. Interference of quorum sensing in urinary pathogen Serratia marcescens by Anethum graveolens. Pathog Dis, 73(6): ffv038.
  • Sankaranarayanan A, Govindarasu M, Gopalu K, Shine K, Naiyf S, Jamal M, Denis K. 2016. Green synthesis of silver nanoparticles using Arachis hypogaea (ground nut) Root extract for antibacterial and clinical applications. J Clust Sci, 28: 995-1008.
  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA. 2015. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol, 99: 4579-4593.
  • Yang N, Li WH. 2013. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics, Ind Crop Prod, 48: 81.
  • Zhang SB, Lu QY, Yang H, Li Y, Wang S. 2011. Aqueous enzymatic extraction of oil and protein hydrolysates from roasted peanut seeds. J Amer Oil Chem Soc, 88: 727-732.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bakteriyoloji
Bölüm Research Articles
Yazarlar

Taylan Aktaş 0000-0003-1323-8459

Yayımlanma Tarihi 15 Mart 2025
Gönderilme Tarihi 19 Aralık 2024
Kabul Tarihi 23 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Aktaş, T. (2025). Arachis hypogaea Bitkisi Kullanılarak Yeşil Sentezi Gerçekleştirilen Gümüş Nanopartiküllerin Antimikrobiyal ve Anti Quorum Sensing Aktivitelerinin Tespiti. Black Sea Journal of Engineering and Science, 8(2), 298-309. https://doi.org/10.34248/bsengineering.1604007
AMA Aktaş T. Arachis hypogaea Bitkisi Kullanılarak Yeşil Sentezi Gerçekleştirilen Gümüş Nanopartiküllerin Antimikrobiyal ve Anti Quorum Sensing Aktivitelerinin Tespiti. BSJ Eng. Sci. Mart 2025;8(2):298-309. doi:10.34248/bsengineering.1604007
Chicago Aktaş, Taylan. “Arachis Hypogaea Bitkisi Kullanılarak Yeşil Sentezi Gerçekleştirilen Gümüş Nanopartiküllerin Antimikrobiyal Ve Anti Quorum Sensing Aktivitelerinin Tespiti”. Black Sea Journal of Engineering and Science 8, sy. 2 (Mart 2025): 298-309. https://doi.org/10.34248/bsengineering.1604007.
EndNote Aktaş T (01 Mart 2025) Arachis hypogaea Bitkisi Kullanılarak Yeşil Sentezi Gerçekleştirilen Gümüş Nanopartiküllerin Antimikrobiyal ve Anti Quorum Sensing Aktivitelerinin Tespiti. Black Sea Journal of Engineering and Science 8 2 298–309.
IEEE T. Aktaş, “Arachis hypogaea Bitkisi Kullanılarak Yeşil Sentezi Gerçekleştirilen Gümüş Nanopartiküllerin Antimikrobiyal ve Anti Quorum Sensing Aktivitelerinin Tespiti”, BSJ Eng. Sci., c. 8, sy. 2, ss. 298–309, 2025, doi: 10.34248/bsengineering.1604007.
ISNAD Aktaş, Taylan. “Arachis Hypogaea Bitkisi Kullanılarak Yeşil Sentezi Gerçekleştirilen Gümüş Nanopartiküllerin Antimikrobiyal Ve Anti Quorum Sensing Aktivitelerinin Tespiti”. Black Sea Journal of Engineering and Science 8/2 (Mart 2025), 298-309. https://doi.org/10.34248/bsengineering.1604007.
JAMA Aktaş T. Arachis hypogaea Bitkisi Kullanılarak Yeşil Sentezi Gerçekleştirilen Gümüş Nanopartiküllerin Antimikrobiyal ve Anti Quorum Sensing Aktivitelerinin Tespiti. BSJ Eng. Sci. 2025;8:298–309.
MLA Aktaş, Taylan. “Arachis Hypogaea Bitkisi Kullanılarak Yeşil Sentezi Gerçekleştirilen Gümüş Nanopartiküllerin Antimikrobiyal Ve Anti Quorum Sensing Aktivitelerinin Tespiti”. Black Sea Journal of Engineering and Science, c. 8, sy. 2, 2025, ss. 298-09, doi:10.34248/bsengineering.1604007.
Vancouver Aktaş T. Arachis hypogaea Bitkisi Kullanılarak Yeşil Sentezi Gerçekleştirilen Gümüş Nanopartiküllerin Antimikrobiyal ve Anti Quorum Sensing Aktivitelerinin Tespiti. BSJ Eng. Sci. 2025;8(2):298-309.

                                                24890