Araştırma Makalesi
BibTex RIS Kaynak Göster

On the Periodic Solutions of Some Systems of Difference Equations

Yıl 2018, Cilt: 1 Sayı: 2, 126 - 136, 24.12.2018
https://doi.org/10.33434/cams.442662

Öz

In this paper, we study the solution of the systems of difference equations \begin{equation*} x_{n+1}=\frac{1\pm (y_{n}+x_{n-1})}{y_{n-2}},\ \ \ y_{n+1}=\frac{1\pm (x_{n}+y_{n-1})}{x_{n-2}},\;\;n=0,1,..., \end{equation*}% {\Large \noindent }where the initial conditions $x_{-2},\ x_{-1},\ x_{0},$ $% y_{-2},\ y_{-1},\ y_{0}$ are arbitrary non zero real numbers.

Kaynakça

  • [1] F. Alzahrani, A. Khaliq, E. M. Elsayed, Dynamics and behaviour of some rational systems of difference equations, J. Comput. Theoret. Nanosci., 13(11) (2016), 8583-8599.
  • [2] A. Asiri, M. M. El-Dessoky, E. M. Elsayed, Solution of a third order fractional system of difference equations, J. Comput. Anal. Appl., 24(3) (2018), 444-453.
  • [3] H. Bao, On a system of second-order nonlinear difference equations, J. Appl. Math. Phys., 3 (2015), 903-910.
  • [4] C. Cinar, On the positive solutions of the difference equation system, $x_{n+1}=\frac{1}{y_{n}},$ $y_{n+1}=\frac{y_{n}}{x_{n-1}y_{n-1}},$; Appl. Math. Comput.,158 (2004), 303-305.
  • [5] C. A. Clark, M. R. S. Kulenovic, J. F. Selgrade, On a system of rational difference equations, J. Differ. Equ. Appl., 11 (2005), 565-580.
  • [6] Q. Din, E. M. Elsayed, Stability analysis of a discrete ecological model, Comput. Ecol. Softw., 4 (2014), 89-103.
  • [7] Q. Din, M. N. Qureshi, A. Q. Khan, Qualitative behaviour of an anti-competitive system of third-order rational difference equations, Comput. Ecol. Softw., 4 (2014), 104-115.
  • [8] M. M. El-Dessoky, On a systems of rational difference equations of Order Two, Proc. Jangjeon Math. Soc., 19 (2016), 271-284.
  • [9] M. M. El-Dessoky, Solution of a rational systems of difference equations of order three, Mathematics, 2016, 12 pages.
  • [10] M. M. El-Dessoky, The form of solutions and periodicity for some systems of third - order rational difference equations, Math. Methods Appl., Sci., 39 (2016), 1076-1092.
  • [11] M. M. El-Dessoky, E. M. Elsayed and M. Alghamdi, Solutions and periodicity for some systems of fourth order rational difference equations, J. Comput. Anal. Appl., 18 (2015), 179-194.
  • [12] M. M. El-Dessoky, M. Mansour, E. M. Elsayed, Solutions of some rational systems of difference equations, Util. Math., 92 (2013), 329-336.
  • [13] E. M. Elsayed, On the solutions of a rational system of difference equations, Fasc. Math., 45 (2010), 25-36.
  • [14] E. M. Elsayed, A. Alotaibi, H. A. Almaylabi, On a solutions of fourth order rational systems of difference equations, J. Comput. Anal. Appl., 22(7) (2017), 1298-1308.
  • [15] E. M. Elsayed, M. Mansour and M. M. El-Dessoky, Solutions of fractional systems of difference equations, Ars Combin. 110 (2013), 469-479.
  • [16] A. Q. Khan, M. N. Qureshi, Global dynamics of some systems of rational difference equations, J. Egyptian Math. Soc., 24 (2016), 30-36.
  • [17] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [18] M. Kulenovic, G. Ladas, Dynamics of second order rational difference equations with open problems and conjectures, Chapman & Hall / CRC Press, U.S.A., 2001.
  • [19] A. S. Kurbanlı, C. Cinar, I. Yalcinkaya, On the behavior of positive solutions of the system of rational difference equations $x_{n+1}= \frac{x_{n-1}}{1+x_{n-1}y_{n}},$ $y_{n+1}=\frac{y_{n-1}}{1+x_{n}y_{n-1}}$, Math. Comput. Model., 53(5-6) (2011), 1261-1267.
  • [20] A. S. Kurbanlı, On the behavior of solutions of the system of rational difference equations, World Appl. Sci. J., 10 (2010), 1344-1350.
  • [21] M. Mansour, M. M. El-Dessoky, E. M. Elsayed, On the solution of rational systems of difference equations, J. Comput. Anal. Appl., 15 (2013), 967-976.
  • [22] A. Neyrameh, H. Neyrameh, M. Ebrahimi, A. Roozi, Analytic solution diffusivity equation in rational form, World Appl. Sci. J., 10 (2010), 764-768.
  • [23] G. Papaschinopoulos, C. J. Schinas, On a system of two nonlinear difference equations, J. Math. Anal. Appl., 219 (1998), 415-426.
  • [24] S. Stevic, B. Iricanin, Z. Smarda, Boundedness character of a fourth-order system of difference equations, Adv. Differ. Equ., 2015 (2015), 11 pages.
  • [25] I. Yalcinkaya, On the global asymptotic stability of a second-order system of difference equations, Discrete Dyn. Nat. Soc., 2008(2008), 12 pages.
Yıl 2018, Cilt: 1 Sayı: 2, 126 - 136, 24.12.2018
https://doi.org/10.33434/cams.442662

Öz

Kaynakça

  • [1] F. Alzahrani, A. Khaliq, E. M. Elsayed, Dynamics and behaviour of some rational systems of difference equations, J. Comput. Theoret. Nanosci., 13(11) (2016), 8583-8599.
  • [2] A. Asiri, M. M. El-Dessoky, E. M. Elsayed, Solution of a third order fractional system of difference equations, J. Comput. Anal. Appl., 24(3) (2018), 444-453.
  • [3] H. Bao, On a system of second-order nonlinear difference equations, J. Appl. Math. Phys., 3 (2015), 903-910.
  • [4] C. Cinar, On the positive solutions of the difference equation system, $x_{n+1}=\frac{1}{y_{n}},$ $y_{n+1}=\frac{y_{n}}{x_{n-1}y_{n-1}},$; Appl. Math. Comput.,158 (2004), 303-305.
  • [5] C. A. Clark, M. R. S. Kulenovic, J. F. Selgrade, On a system of rational difference equations, J. Differ. Equ. Appl., 11 (2005), 565-580.
  • [6] Q. Din, E. M. Elsayed, Stability analysis of a discrete ecological model, Comput. Ecol. Softw., 4 (2014), 89-103.
  • [7] Q. Din, M. N. Qureshi, A. Q. Khan, Qualitative behaviour of an anti-competitive system of third-order rational difference equations, Comput. Ecol. Softw., 4 (2014), 104-115.
  • [8] M. M. El-Dessoky, On a systems of rational difference equations of Order Two, Proc. Jangjeon Math. Soc., 19 (2016), 271-284.
  • [9] M. M. El-Dessoky, Solution of a rational systems of difference equations of order three, Mathematics, 2016, 12 pages.
  • [10] M. M. El-Dessoky, The form of solutions and periodicity for some systems of third - order rational difference equations, Math. Methods Appl., Sci., 39 (2016), 1076-1092.
  • [11] M. M. El-Dessoky, E. M. Elsayed and M. Alghamdi, Solutions and periodicity for some systems of fourth order rational difference equations, J. Comput. Anal. Appl., 18 (2015), 179-194.
  • [12] M. M. El-Dessoky, M. Mansour, E. M. Elsayed, Solutions of some rational systems of difference equations, Util. Math., 92 (2013), 329-336.
  • [13] E. M. Elsayed, On the solutions of a rational system of difference equations, Fasc. Math., 45 (2010), 25-36.
  • [14] E. M. Elsayed, A. Alotaibi, H. A. Almaylabi, On a solutions of fourth order rational systems of difference equations, J. Comput. Anal. Appl., 22(7) (2017), 1298-1308.
  • [15] E. M. Elsayed, M. Mansour and M. M. El-Dessoky, Solutions of fractional systems of difference equations, Ars Combin. 110 (2013), 469-479.
  • [16] A. Q. Khan, M. N. Qureshi, Global dynamics of some systems of rational difference equations, J. Egyptian Math. Soc., 24 (2016), 30-36.
  • [17] V. L. Kocic, G. Ladas, Global behavior of nonlinear difference equations of higher order with applications, Kluwer Academic Publishers, Dordrecht, 1993.
  • [18] M. Kulenovic, G. Ladas, Dynamics of second order rational difference equations with open problems and conjectures, Chapman & Hall / CRC Press, U.S.A., 2001.
  • [19] A. S. Kurbanlı, C. Cinar, I. Yalcinkaya, On the behavior of positive solutions of the system of rational difference equations $x_{n+1}= \frac{x_{n-1}}{1+x_{n-1}y_{n}},$ $y_{n+1}=\frac{y_{n-1}}{1+x_{n}y_{n-1}}$, Math. Comput. Model., 53(5-6) (2011), 1261-1267.
  • [20] A. S. Kurbanlı, On the behavior of solutions of the system of rational difference equations, World Appl. Sci. J., 10 (2010), 1344-1350.
  • [21] M. Mansour, M. M. El-Dessoky, E. M. Elsayed, On the solution of rational systems of difference equations, J. Comput. Anal. Appl., 15 (2013), 967-976.
  • [22] A. Neyrameh, H. Neyrameh, M. Ebrahimi, A. Roozi, Analytic solution diffusivity equation in rational form, World Appl. Sci. J., 10 (2010), 764-768.
  • [23] G. Papaschinopoulos, C. J. Schinas, On a system of two nonlinear difference equations, J. Math. Anal. Appl., 219 (1998), 415-426.
  • [24] S. Stevic, B. Iricanin, Z. Smarda, Boundedness character of a fourth-order system of difference equations, Adv. Differ. Equ., 2015 (2015), 11 pages.
  • [25] I. Yalcinkaya, On the global asymptotic stability of a second-order system of difference equations, Discrete Dyn. Nat. Soc., 2008(2008), 12 pages.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

E. M. Elsayed 0000-0003-0894-8472

H. S. Gafel Bu kişi benim

Yayımlanma Tarihi 24 Aralık 2018
Gönderilme Tarihi 11 Temmuz 2018
Kabul Tarihi 1 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 1 Sayı: 2

Kaynak Göster

APA Elsayed, E. M., & Gafel, H. S. (2018). On the Periodic Solutions of Some Systems of Difference Equations. Communications in Advanced Mathematical Sciences, 1(2), 126-136. https://doi.org/10.33434/cams.442662
AMA Elsayed EM, Gafel HS. On the Periodic Solutions of Some Systems of Difference Equations. Communications in Advanced Mathematical Sciences. Aralık 2018;1(2):126-136. doi:10.33434/cams.442662
Chicago Elsayed, E. M., ve H. S. Gafel. “On the Periodic Solutions of Some Systems of Difference Equations”. Communications in Advanced Mathematical Sciences 1, sy. 2 (Aralık 2018): 126-36. https://doi.org/10.33434/cams.442662.
EndNote Elsayed EM, Gafel HS (01 Aralık 2018) On the Periodic Solutions of Some Systems of Difference Equations. Communications in Advanced Mathematical Sciences 1 2 126–136.
IEEE E. M. Elsayed ve H. S. Gafel, “On the Periodic Solutions of Some Systems of Difference Equations”, Communications in Advanced Mathematical Sciences, c. 1, sy. 2, ss. 126–136, 2018, doi: 10.33434/cams.442662.
ISNAD Elsayed, E. M. - Gafel, H. S. “On the Periodic Solutions of Some Systems of Difference Equations”. Communications in Advanced Mathematical Sciences 1/2 (Aralık 2018), 126-136. https://doi.org/10.33434/cams.442662.
JAMA Elsayed EM, Gafel HS. On the Periodic Solutions of Some Systems of Difference Equations. Communications in Advanced Mathematical Sciences. 2018;1:126–136.
MLA Elsayed, E. M. ve H. S. Gafel. “On the Periodic Solutions of Some Systems of Difference Equations”. Communications in Advanced Mathematical Sciences, c. 1, sy. 2, 2018, ss. 126-3, doi:10.33434/cams.442662.
Vancouver Elsayed EM, Gafel HS. On the Periodic Solutions of Some Systems of Difference Equations. Communications in Advanced Mathematical Sciences. 2018;1(2):126-3.

28631   CAMS'da yayınlanan makaleler Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.