We investigate a Kirchhoff type plate equation with degenerate damping term. By potential well theory, we show the asymptotic stability of energy in the presence of a degenerate damping.
[1] V. Barbu, I. Lasiecka, M. A. Rammaha, Existence and uniqueness of solutions to wave equations with nonlinear degenerate
damping and source terms, Control Cybernet., 34(3) (2005), 665-687.
[2] S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J Appl Mech., 17 (1950), 35-36.
[3] J. A. Esquivel-Avila, Dynamic analysis of a nonlinear Timoshenko equation, Abstr Appl Anal., 2010 (2011), 1-36.
[4] J. A. Esquivel-Avila, Global attractor for a nonlinear Timoshenko equation with source terms, Math Sci., 7(32) (2013),
1-8.
[5] E. Pis¸kin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source
terms, Open Math., 13 (2005), 408-420.
[6] E. Pis¸kin, N. Irkıl, Blow up positive initial-energy solutions for the extensible beam equation with nonlinear damping and
source terms, Ser. Math. Inform., 31(3) (2016), 645-654.
[7] D. C. Pereira, H. Nguyen, C. A. Raposo, C. H. M. Maranhao, On the solutions for an extensible beam equation with
internal damping and source terms, Differential Equations & Applications, 11(3) (2019), 367-377.
[8] E. Pis¸kin, H. Y¨uksekkaya, Non-existence of solutions for a Timoshenko equations with weak dissipation, Math Morav.,
22(2) (2018), 1-9.
[9] H. A. Levine, J. Serrin, Global nonexistence theorems for quasilinear evolution with dissipation, Arch. Rational Mech.
Anal, 137 (1997), 341-361.
[10] D. R. Pitts, M. A. Rammaha, Global existence and nonexistence theorems for nonlinear wave equations, Indiana Uni.
Math. J., 51(6) (2002), 1479-1509.
[11] V. Barbu, I. Lasiecka, M. A. Rammaha, Blow-up of generalized solutions to wave equations with nonlinear degenerate
damping and source terms, Indiana Uni. Math. J., 56(3) (2007), 995-1022.
[12] V. Barbu, I. Lasiecka, M.A. Rammaha, On nonlinear wave equations with degenerate damping and source terms, Trans.
Amer. Math. Soc., 357(7) (2005), 2571-2611.
[13] Q. Hu, H. Zhang, Blow up and asymptotic stability of weak solutions to wave equations with nonlinear degenerate damping
and source terms, Electron J. Differ. Eq., 2007 (76) (2007), 1-10.
[14] S. Xiao, W. Shubin, A blow-up result with arbitrary positive initial energy for nonlinear wave equations with degenerate
damping terms, J. Part. Diff. Eq., 32 (2019), 181-190.
[15] F. Ekinci, E. Pis¸kin, Nonexistence of global solutions for the Timoshenko equation with degenerate damping, Menemui
Mat., 43(1) (2021), 1-8.
[16] E. Pis¸kin, F. Ekinci, General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with
degenerate damping terms, Math. Meth. App. Sci., 42(16) (2019), 1-21.
[17] E. Pis¸kin, F. Ekinci, Local existence and blow up of solutions for a coupled viscoelastic Kirchhoff-type equations with
degenerate damping, Miskolc Math. Notes, 22(2) (2021), 861-874.
[18] E. Pis¸kin, F. Ekinci, Blow up of solutions for a coupled Kirchhoff-type equations with degenerate damping terms,
Applications & Applied Mathematics, 14(2) (2019), 942-956.
[19] E. Pis¸kin, F. Ekinci, K. Zennir, Local existence and blow-up of solutions for coupled viscoelastic wave equations with
degenerate damping terms, Theor. Appl. Mech., 47(1) (2020), 123-154.
[20] E. Pis¸kin, F. Ekinci, Global existence of solutions for a coupled viscoelastic plate equation with degenerate damping terms,
Tbilisi Math. J., 14(2021), 195-206.
[21] E. Pis¸kin, F. Ekinci, H. Zhang, Blow up, lower bounds and exponential growth to a coupled quasilinear wave equations
with degenerate damping terms, Dynamics of Continuous, Discrete and Impulsive Systems, In press.
[22] F. Ekinci, E. Pis¸kin, S. M. Boulaaras, I. Mekawy, Global existence and general decay of solutions for a quasilinear system
with degenerate damping terms, J. Funct. Spaces, 2021 (2021), 4316238.
[23] F. Ekinci, E. Pis¸kin, Blow up and exponential growth to a Petrovsky equation with degenerate damping, Univers. J. Math.
Appl., 4(2) (2021), 82-87.
[24] F. Ekinci, E. Pis¸kin, Global existence and growth of solutions to coupled degeneratly damped Klein-Gordon equations,
Al-Qadisiyah Journal of Pure Science, 27(1) (2022), 29-40.
[25] F. Ekinci, E. Pis¸kin, Growth of solutions for fourth order viscoelastic system, Sigma Journal of Engineering and Natural
Sciences, (2021), 1-7.
[26] F. Ekinci, E. Pis¸kin, K. Zennir, Existence, blow up and growth of solutions for a coupled quasi-linear viscoelastic Petrovsky
equations with degenerate damping terms, Journal of Information and Optimization Sciences, (2021), 1-29.
[27] E. Pis¸kin, F. Ekinci, Blow up, exponential growth of solution for a reaction-diffusion equation with multiple nonlinearities,
Tbilisi Math. J., 12(4) (2019), 61-70.
[1] V. Barbu, I. Lasiecka, M. A. Rammaha, Existence and uniqueness of solutions to wave equations with nonlinear degenerate
damping and source terms, Control Cybernet., 34(3) (2005), 665-687.
[2] S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J Appl Mech., 17 (1950), 35-36.
[3] J. A. Esquivel-Avila, Dynamic analysis of a nonlinear Timoshenko equation, Abstr Appl Anal., 2010 (2011), 1-36.
[4] J. A. Esquivel-Avila, Global attractor for a nonlinear Timoshenko equation with source terms, Math Sci., 7(32) (2013),
1-8.
[5] E. Pis¸kin, Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source
terms, Open Math., 13 (2005), 408-420.
[6] E. Pis¸kin, N. Irkıl, Blow up positive initial-energy solutions for the extensible beam equation with nonlinear damping and
source terms, Ser. Math. Inform., 31(3) (2016), 645-654.
[7] D. C. Pereira, H. Nguyen, C. A. Raposo, C. H. M. Maranhao, On the solutions for an extensible beam equation with
internal damping and source terms, Differential Equations & Applications, 11(3) (2019), 367-377.
[8] E. Pis¸kin, H. Y¨uksekkaya, Non-existence of solutions for a Timoshenko equations with weak dissipation, Math Morav.,
22(2) (2018), 1-9.
[9] H. A. Levine, J. Serrin, Global nonexistence theorems for quasilinear evolution with dissipation, Arch. Rational Mech.
Anal, 137 (1997), 341-361.
[10] D. R. Pitts, M. A. Rammaha, Global existence and nonexistence theorems for nonlinear wave equations, Indiana Uni.
Math. J., 51(6) (2002), 1479-1509.
[11] V. Barbu, I. Lasiecka, M. A. Rammaha, Blow-up of generalized solutions to wave equations with nonlinear degenerate
damping and source terms, Indiana Uni. Math. J., 56(3) (2007), 995-1022.
[12] V. Barbu, I. Lasiecka, M.A. Rammaha, On nonlinear wave equations with degenerate damping and source terms, Trans.
Amer. Math. Soc., 357(7) (2005), 2571-2611.
[13] Q. Hu, H. Zhang, Blow up and asymptotic stability of weak solutions to wave equations with nonlinear degenerate damping
and source terms, Electron J. Differ. Eq., 2007 (76) (2007), 1-10.
[14] S. Xiao, W. Shubin, A blow-up result with arbitrary positive initial energy for nonlinear wave equations with degenerate
damping terms, J. Part. Diff. Eq., 32 (2019), 181-190.
[15] F. Ekinci, E. Pis¸kin, Nonexistence of global solutions for the Timoshenko equation with degenerate damping, Menemui
Mat., 43(1) (2021), 1-8.
[16] E. Pis¸kin, F. Ekinci, General decay and blowup of solutions for coupled viscoelastic equation of Kirchhoff type with
degenerate damping terms, Math. Meth. App. Sci., 42(16) (2019), 1-21.
[17] E. Pis¸kin, F. Ekinci, Local existence and blow up of solutions for a coupled viscoelastic Kirchhoff-type equations with
degenerate damping, Miskolc Math. Notes, 22(2) (2021), 861-874.
[18] E. Pis¸kin, F. Ekinci, Blow up of solutions for a coupled Kirchhoff-type equations with degenerate damping terms,
Applications & Applied Mathematics, 14(2) (2019), 942-956.
[19] E. Pis¸kin, F. Ekinci, K. Zennir, Local existence and blow-up of solutions for coupled viscoelastic wave equations with
degenerate damping terms, Theor. Appl. Mech., 47(1) (2020), 123-154.
[20] E. Pis¸kin, F. Ekinci, Global existence of solutions for a coupled viscoelastic plate equation with degenerate damping terms,
Tbilisi Math. J., 14(2021), 195-206.
[21] E. Pis¸kin, F. Ekinci, H. Zhang, Blow up, lower bounds and exponential growth to a coupled quasilinear wave equations
with degenerate damping terms, Dynamics of Continuous, Discrete and Impulsive Systems, In press.
[22] F. Ekinci, E. Pis¸kin, S. M. Boulaaras, I. Mekawy, Global existence and general decay of solutions for a quasilinear system
with degenerate damping terms, J. Funct. Spaces, 2021 (2021), 4316238.
[23] F. Ekinci, E. Pis¸kin, Blow up and exponential growth to a Petrovsky equation with degenerate damping, Univers. J. Math.
Appl., 4(2) (2021), 82-87.
[24] F. Ekinci, E. Pis¸kin, Global existence and growth of solutions to coupled degeneratly damped Klein-Gordon equations,
Al-Qadisiyah Journal of Pure Science, 27(1) (2022), 29-40.
[25] F. Ekinci, E. Pis¸kin, Growth of solutions for fourth order viscoelastic system, Sigma Journal of Engineering and Natural
Sciences, (2021), 1-7.
[26] F. Ekinci, E. Pis¸kin, K. Zennir, Existence, blow up and growth of solutions for a coupled quasi-linear viscoelastic Petrovsky
equations with degenerate damping terms, Journal of Information and Optimization Sciences, (2021), 1-29.
[27] E. Pis¸kin, F. Ekinci, Blow up, exponential growth of solution for a reaction-diffusion equation with multiple nonlinearities,
Tbilisi Math. J., 12(4) (2019), 61-70.
Ekinci, F., & Pişkin, E. (2022). Stability of Solutions for a Krichhoff-Type Plate Equation with Degenerate Damping. Communications in Advanced Mathematical Sciences, 5(3), 131-136. https://doi.org/10.33434/cams.1118409
AMA
Ekinci F, Pişkin E. Stability of Solutions for a Krichhoff-Type Plate Equation with Degenerate Damping. Communications in Advanced Mathematical Sciences. Eylül 2022;5(3):131-136. doi:10.33434/cams.1118409
Chicago
Ekinci, Fatma, ve Erhan Pişkin. “Stability of Solutions for a Krichhoff-Type Plate Equation With Degenerate Damping”. Communications in Advanced Mathematical Sciences 5, sy. 3 (Eylül 2022): 131-36. https://doi.org/10.33434/cams.1118409.
EndNote
Ekinci F, Pişkin E (01 Eylül 2022) Stability of Solutions for a Krichhoff-Type Plate Equation with Degenerate Damping. Communications in Advanced Mathematical Sciences 5 3 131–136.
IEEE
F. Ekinci ve E. Pişkin, “Stability of Solutions for a Krichhoff-Type Plate Equation with Degenerate Damping”, Communications in Advanced Mathematical Sciences, c. 5, sy. 3, ss. 131–136, 2022, doi: 10.33434/cams.1118409.
ISNAD
Ekinci, Fatma - Pişkin, Erhan. “Stability of Solutions for a Krichhoff-Type Plate Equation With Degenerate Damping”. Communications in Advanced Mathematical Sciences 5/3 (Eylül 2022), 131-136. https://doi.org/10.33434/cams.1118409.
JAMA
Ekinci F, Pişkin E. Stability of Solutions for a Krichhoff-Type Plate Equation with Degenerate Damping. Communications in Advanced Mathematical Sciences. 2022;5:131–136.
MLA
Ekinci, Fatma ve Erhan Pişkin. “Stability of Solutions for a Krichhoff-Type Plate Equation With Degenerate Damping”. Communications in Advanced Mathematical Sciences, c. 5, sy. 3, 2022, ss. 131-6, doi:10.33434/cams.1118409.
Vancouver
Ekinci F, Pişkin E. Stability of Solutions for a Krichhoff-Type Plate Equation with Degenerate Damping. Communications in Advanced Mathematical Sciences. 2022;5(3):131-6.