Araştırma Makalesi
BibTex RIS Kaynak Göster

Minimization of Quadratic Functionals Through Γ-Hilbert Space

Yıl 2022, Cilt: 19 Sayı: 1, 22 - 28, 01.05.2022

Öz

In this article we introduce the Gateaux differential and Frechet differential in Γ-Hilbert
space. We show the examples and related theorems in this space. We have noticed that
two differentials mentioned above will be equal for certain condition. Also, we discuss
the relative extremum and the stationary point of a functional in Γ-Hilbert space. We
already investigated the characteristics of both bounded and unbounded operators of
Γ-Hilbert space. Now, by using previous concept we elaborate optimization problems
and extremum of quadratic functionals in Γ-Hilbert space. Here we observe that how
the function of the solution of a operator equation minimizes the quadratic functionals.
Finally we describe the Minimization of quadratic functionals and its related theorem
via Γ-Hilbert space.

Kaynakça

  • T. E. Aman and D. K. Bhattacharya, "Γ-Hilbert Space and linear quadratic control problem," Revista de la Academia Canaria de Ciencias, vol. 15, no. 1-2, pp. 107-114, 2004.
  • A. Gosh, A. Das and T. E. Aman, "Representation Theorem on Γ-Hilbert Space," International Journal of Mathematics Trends and Technology, vol. 52, no. 9, pp. 608-615, 2017.
  • S. Islam and A. Das, "On Some bounded Operators and their characterizations in Γ-Hilbert Space," Cumhuriyet Science Journal, vol. 41, no. 4, pp. 854-861, 2020.
  • A. Das, A. Ghosh and T. E. Aman, "Calculas on Γ-Hilbert Space," Journal of Interdisciplinary Cycle Research. vol. 12, no. 7, pp. 254-268, 2020.
Yıl 2022, Cilt: 19 Sayı: 1, 22 - 28, 01.05.2022

Öz

Kaynakça

  • T. E. Aman and D. K. Bhattacharya, "Γ-Hilbert Space and linear quadratic control problem," Revista de la Academia Canaria de Ciencias, vol. 15, no. 1-2, pp. 107-114, 2004.
  • A. Gosh, A. Das and T. E. Aman, "Representation Theorem on Γ-Hilbert Space," International Journal of Mathematics Trends and Technology, vol. 52, no. 9, pp. 608-615, 2017.
  • S. Islam and A. Das, "On Some bounded Operators and their characterizations in Γ-Hilbert Space," Cumhuriyet Science Journal, vol. 41, no. 4, pp. 854-861, 2020.
  • A. Das, A. Ghosh and T. E. Aman, "Calculas on Γ-Hilbert Space," Journal of Interdisciplinary Cycle Research. vol. 12, no. 7, pp. 254-268, 2020.
Toplam 4 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sahın Injamamul Islam 0000-0002-8587-7922

Nırmal Sarkar 0000-0002-9050-1479

Ashoke Das 0000-0002-6612-0182

Yayımlanma Tarihi 1 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 19 Sayı: 1

Kaynak Göster

APA Islam, S. I., Sarkar, N., & Das, A. (2022). Minimization of Quadratic Functionals Through Γ-Hilbert Space. Cankaya University Journal of Science and Engineering, 19(1), 22-28.
AMA Islam SI, Sarkar N, Das A. Minimization of Quadratic Functionals Through Γ-Hilbert Space. CUJSE. Mayıs 2022;19(1):22-28.
Chicago Islam, Sahın Injamamul, Nırmal Sarkar, ve Ashoke Das. “Minimization of Quadratic Functionals Through Γ-Hilbert Space”. Cankaya University Journal of Science and Engineering 19, sy. 1 (Mayıs 2022): 22-28.
EndNote Islam SI, Sarkar N, Das A (01 Mayıs 2022) Minimization of Quadratic Functionals Through Γ-Hilbert Space. Cankaya University Journal of Science and Engineering 19 1 22–28.
IEEE S. I. Islam, N. Sarkar, ve A. Das, “Minimization of Quadratic Functionals Through Γ-Hilbert Space”, CUJSE, c. 19, sy. 1, ss. 22–28, 2022.
ISNAD Islam, Sahın Injamamul vd. “Minimization of Quadratic Functionals Through Γ-Hilbert Space”. Cankaya University Journal of Science and Engineering 19/1 (Mayıs 2022), 22-28.
JAMA Islam SI, Sarkar N, Das A. Minimization of Quadratic Functionals Through Γ-Hilbert Space. CUJSE. 2022;19:22–28.
MLA Islam, Sahın Injamamul vd. “Minimization of Quadratic Functionals Through Γ-Hilbert Space”. Cankaya University Journal of Science and Engineering, c. 19, sy. 1, 2022, ss. 22-28.
Vancouver Islam SI, Sarkar N, Das A. Minimization of Quadratic Functionals Through Γ-Hilbert Space. CUJSE. 2022;19(1):22-8.