BibTex RIS Kaynak Göster

Gıda Üretimi ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler - Factors Effecting Probiotic Viability During Processing and Storage of Food

Yıl 2015, Cilt: 11 Sayı: 2, 0 - , 18.12.2015
https://doi.org/10.18466/cbujos.83380

Öz

Gıda Üretimi ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler

Probiyotik gıdaların vücudun dengesinin ve intestinal floranın doğal yapısının sürdürülmesi, patojenlerin gelişimine karşı direnç gösterme gibi sağlığa pek çok yararı bulunmaktadır. Probiyotik bakterilerin kullanıldığı fonksiyonel gıdalara karşı eğilim tüketicilerin bu gıdaların sağlığa olumlu etkilerinin fark etmeleri sebebiyle giderek artmaktadır. Probiyotiklerin bağırsak mikroflorasını patojenlere karşı koruma, bağışıklık sistemini güçlendirme, serum kolesterol seviyesini ve kan basıncını düşürme, antikarsinojenik etki gösterme, besin maddelerinden faydalanımın ve gıdaların besin değerinin artması gibi çok sayıda sağlığa faydası vardır. Günümüzde probiyotik bakteriler kullanılarak pek çok ürün üretimi gerçekleştirilmektedir. Probiyotiklerin sağlık üzerine olumlu etki gösterebilmesi için ürün tüketimi sırasında yeterli miktarda probiyotik bakterinin gıda ile birlikte vücuda alınması gerekmektedir. Ancak bazen probiyotik bakterilerin kullanıldığı gıdaların tüketimi sırasında vücuda yeterli dozda probiyotik alınamayabilmektedir. Çünkü ürün üretimi ve depolaması sırasında çeşitli faktörler probiyotik bakterilerin hayatta kalmalarını etkilemektedir. Gıdalarda probiyotik varlığı bazen ürün kalitesini ve duyusal özelliklerini olumsuz yönde etkileyebilmektedir. Son yıllarda ürün üretiminden son tüketiciye ulaşana kadar probiyotiklerin canlılıklarının sürdürülmesi için farklı gıdalarda çeşitli uygulamalar yapılmaktadır. Bu uygulamalardan en önemlisi çeşitli koruyucular ilavesiyle üretim ve depolama koşullarının değişimi yoluyla enkapsülasyon tekniği yardımıyla mikroorganizmaların korunmasıdır. Bu makalede probiyotiklerin sağlığa yararlı etkileri, gıdaların üretimi ve depolanmaları sırasında gıdalarda yaşayabilirliklerini etkileyen faktörler, üretim ve depolama sırasında canlılıklarını sürdürmelerine yardımcı olabilecek teknolojik uygulamalar incelenecektir.

Factors Effecting Probiotic Viability During Processing and Storage of Food

Probiotic foods have several health benefits as they help maintain the human body balance and intestinal flora composition, and resist to pathogenic bacteria growth. The demand of probiotic functional foods is growing rapidly due to increased awareness of consumers about the impact of food on health. Probiotics provide a number of health benefits mainly through maintenance of normal intestinal microflora, protection against gastrointestinal pathogens, enhancement of the immune system, reduction of serum cholesterol level and blood pressure, anti-carcinogenic activity improved utilization of nutrients and improved nutritional value of food. During consumption of food, probiotics can’t be taken to body sufficiently. Because in food production and storage, several factors can effect viability of probiotic microorganism. The presence of probiotics in food products may also adversely affect their quality and sensory properties. Several attempts have been made during the last few years to improve the viability of probiotics in different food products during their production until the time of consumption. The most important implementation is a microencapsulation technique and it enables to protect microorganism via several added preservatives. In this article, it will be examined that the effects of probiotics on human health,   factors responsible for survival of probiotic microorganisms, and recent technological advances in maintaining their viability during processing and storage.

Kaynakça

  • Anonymous. Evaluation of health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. ftp://ftp.fao.org/es/esn/food/ probioreport_en.pdf 2011. Accessed 12 Jan 2013.
  • Lee, Y. K.; Nomoto, K.; Salminen, S.; Gorbach, S. L. Handbook of probiotics. NewYork, NY: JohnWiley and Sons, 1999.
  • Granato, D.; Branco, G. F.; Cruz, A. G.; Faria, J. A. F.; Nazzaro, F. Functional foods and nondairy probiotic food development: Trends, concepts and products. Comprehensive Reviews in Food Science and Food Safety, 2010, 9, 292–302.
  • Hennessy, M. What’s driving growth in functional food and beverages? A convergence of nutrition, convenience and taste. http://www.nutraingredients-usa.com/Markets/Whats- driving-growth-in-functional-food-and-beverages-Aconvergence- of-nutrition-convenience-and-taste. 2013, Accessed 14 Feb 2014.
  • Holzapfel,W. H. Introduction to prebiotics and probiotics. In I. Goktepe, V. K. Juneja, & M. Ahmedna (Eds.), Probiotics in food safety and human health, 2006, 1–35, NewYork: CRC Press.
  • Kołozyn-Krajewskaa, D.; Dolatowski, Z. J. Probiotic meat products and human nutrition. Process Biochemistry (Barking, London, England), 2012, 47, 1761–1772.
  • Mohammadi, R.; Mortazavian, A. M. Technological aspects of prebiotics in probiotic fermented milks. Food Reviews International, 2011, 27, 192–212.
  • Tripathi, M.K.; Giri, S.K. Probiotic functional foods: Survival of probiotics during processing and storage. Journal of Functional Foods, 2 0 1 4, 9, 225–241.
  • Chen, M.; Mustapha, A. Survival of freeze-dried microcapsules of α-galactosidase producing probiotics in a soy bar matrix. Food Microbiology, 2012, 30(1), 68–73.
  • Gupta, S., Abu-Ghannam, N. Probiotic fermentation of plant based products: Possibilities and opportunities. Critical Reviews in Food Science and Nutrition, 2012, 52(2), 183– 199.
  • Mortazavian, A. M.; Khosrokhvar, R.; Rastegar, H.; Mortazaei, G. R. Effects of dry matter standardization order on biochemical and microbiological characteristics of freshly made probiotic Doogh (Iranian fermented milk drink). Italian Journal of Food Science, 2010, 22, 98–102.
  • Noorbakhsh, R.; Yaghmaee, P.; Durance, T. Radiant energy under vacuum (REV) technology: A novel approach for producing probiotic enriched apple snacks. Journal of Functional Foods, 2013, 5, 1049–1056.
  • Rivera-Espinoza, Y.; Gallardo-Navarro, Y. Non-dairy probiotic products. Food Microbiology, 2010, 27, 1–11.
  • D’Aimmo, M. R.; Modesto, M.; Biavati, B.Antibiotic resistance of lactic acid bacteria and Bifidobacterium spp. Isolated from dairy and pharmaceutical products. International Journal of Food Microbiology, 2007, 115(1), 35–42.
  • Lourens-Hattingh, A.; Viljoen, B. C. Yogurt as probiotic carrier food. International Dairy Journal, 2001, 11(1–2), 1–17.
  • Rasic, J. L. Microflora of the intestine probiotics. In B. Caballero, L. Trugo, & P. Finglas (Eds.), Encyclopedia of food sciences and nutrition, 2003, 3911–3916). Oxford: Academic Press.
  • Mattila-Sandholm, T.; Myllarinen, P. M.; Crittenden, R.; Mogensen, G.; Fonden, R.; Saarela, M. Technological challenges for future probiotic foods. International Dairy Journal, 2002, 12, 173– 182.
  • Venturi, A.; Gionchetti, P.; Rizzello, F.; Johansson, R.; Zucconi, E.; Brigidi, P. Impact on the composition of the faecal flora by a new probiotic preparation: Preliminary data on maintenance treatment of patients with ulcerative colitis. Alimentary Pharmacology & Therapeutics, 1999, 13(8), 1103–1108.
  • Gardiner, G. E.; Bouchier, P.; O’Sullivan, E.; Kelly, J.; Kevin Collins, J.; Fitzgerald, G. A spray-dried culture for probiotic Cheddar cheese manufacture. International Dairy Journal, 2002, 12(9), 749–756.
  • Stanton, C.; Ross, R. P.; Fitzgerald, G. F.; Van Sinderen, D. Fermented functional foods based on probiotics and their biogenic metabolites. Curr Opin Biotechnol, 2005, 16(2), 198–203.
  • Holzapfel,W. H.; Haberer, P.; Snel, J.; Schillinger, U.; Huisin’t Veld, J. H. J. Overview of gut flora and probiotics. International Journal of Food Microbiology, 1998, 41, 85–101.
  • Shah, N. P.; Ravula, R. Selling the cells in desserts. Dairy Industries International, 2004, 69, 31–32.
  • Vinderola, C. G.; Reinheimer, J. A. Lactic acid bacteria: A comparative “in vitro” study of probiotic characteristics and biological barrier resistance. Food Research International, 2003, 36, 895–904.
  • Talwalkar, A.; Kailasapathy, K. The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Current Issues in Intestinal Microbiology, 2004, 5, 1–8.
  • Ventura, M.; Perozzi, G. Probiotic bacteria and human gut microbiota. Genes & Nutrition, 2011,6, 203–204.
  • Mättö, J.; Alakomi, H. L.; Vaari, A;, Virkajärvi, I.; Saarela, M.Influence of processing conditions on Bifidobacterium animalis subsp. lactis functionality with a special focus on acid tolerance and factors affecting it. International Dairy Journal, 2006, 16, 1029–1037.
  • Ross, R. P.; Desmond, C.; Fitzgerald, G. F.; Stanton, C. Overcoming the technological hurdles in the development of probiotic foods. Journal of Applied Microbiology, 2005, 98, 1410– 1417.
  • Lee, Y. K.; Salminen, S. Handbook of probiotics and prebiotics (2nd ed.), 2009, Hoboken, NJ: JohnWiley and Sons, Inc.
  • Boylston, T. D.; Vinderola, C. G.; Ghoddusi, H. B.; Reinheimer, J.A. Incorporation of Bifidobacteria into cheeses:Challenges and rewards. International Dairy Journal, 2004, 14, 375–387.
  • Karimi, R.;, Mortazavian, A. M.; Cruz, A. G. Viability of probiotic microorganisms in cheese during production and storage: A review. Dairy Science & Technology, 2011, 91, 283–308.
  • Korbekandi, H.; Mortazavian, A. M.; Iravani, S. Technology and stability of probiotic in fermented milks. In N. Shah, A. G. Cruz, & J. A. F. Faria (Eds.), Probiotic and prebiotic foods: Technology, stability and benefits to the human health, 2011, 131–169, NewYork: Nova Science Publishers.
  • Gaudreau, H.; Champagne, C. P.; Remondetto, G. E.; Bazinet, L.; Subirade, M. Effect of catechins on the growth of oxygen-sensitive probiotic bacteria. Food Research International, 2013, 53, 751–757.
  • Cruz, A. G.; Faria, J. A. F.; Van Dender, A. G. F. Packaging system and probiotic dairy foods. Food Research International, 2007, 40, 951–956.
  • Akin, M. B.; Akin, M. S.; Kirmaci, Z. Effects of inulin and sugar levels on the viability of yogurt and probiotic bacteria and the physical and sensory characteristics in probiotic icecream. Food Chemistry, 2007, 104(1), 93–99.
  • Fowler, A.; Toner, M. Cryo-injury and biopreservation. Annals of New York Academy of Sciences, 2005, 1066, 119–135.
  • Gill, C. O. Microbiology of frozen foods. In S. Da-Wen Boca (Ed.), Handbook of frozen food processing and packaging, 2006,85– 100, Boca Raton, FL: CRC Press.
  • Mohammadi, R.; Mortazavian, A. M.; Khosrokhavar, R.; Cruz, A. G. Probiotic ice cream: Viability of probiotic bacteria and sensory properties. Annals of Microbiology, 2011, 61, 411–424.
  • Santivarangkna, C.; Kulozik, U.; Foerst, P. Effect of carbohydrates on the survival of Lactobacillus helveticus during vacuum drying. Letters in Applied Microbiology, 2006, 42, 271– 276.
  • Nag, A.; Das, S. Improving ambient temperature stability of probiotics with stress adaptation and fluidized bed drying. Journal of Functional Foods, 2013, 5, 170–177.
  • Ferreira, V.; Soares, V.; Santos, C.; Silva, J.; Gibbs, P. A.; Teixeira, P. Survival of L. sakei during heating, drying and storage in the dried state when growth has occurred in the presence of sucrose or monosodium glutamate. Biotechnology Letters, 2005, 27, 249–252.
  • Hubalek, Z. Protectants used in the cryopreservation of microorganisms. Cryobiology, 2003, 46, 205–229.
  • Capela, P.; Hay, T. K. C.; Shah, N. P. Effect of cryoprotectants, prebiotics and microencapsulation on survival of probiotic organisms in yoghurt and freeze dried yoghurt. Food Research International, 2006, 39(2), 203–211.
  • Çakır, İ.. Mikroenkapsülasyon tekniğinin probiyotik gıda üretiminde kullanımı. Bildiriler Kitabı, pp. 693-696. Türkiye 9. Gıda Kongresi, 2006, Bolu, Sim Matbaası, Ankara. 1012 s
  • Burgain, J. J.; Gaiani, C. C.; Linder, M. R.; Scher, J. J. Encapsulation of probiotic living cells: From laboratory scale to industrial applications. Journal of Food Engineering, 2011, 104(4), 467–483.
  • Ying, D. Y.; Phoon, M. C.; Sanguansri, L.; Weerakkody, R.; Burgar, I.; Augustin, M. A. Microencapsulated Lactobacillus rhamnosus GG powders: Relationship of powder physical properties to probiotic survival during storage. Journal of Food Science, 2010, 75(9), E588–E595.
  • Annan, N. T.; Borza, A. D.; Hansen, L. T. Encapsulation in alginate-coated gelatin microspheres improves survival of the probiotic Bifidobacterium adolescent is 15703T during exposure to simulated gastro-intestinal conditions. Food Research International, 2008, 41(2), 184–193.
  • Heidebach, T.; Leeb, E.; Först, P.; Kulozik, U. Microencapsulation of probiotic cells. In Colloids in biotechnology., 2010, USA: CRC-Press/Taylor and Francis. ISBN: 9781439830802.
  • Carvalho, A. S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F. X.; Gibbs, P. Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. bulgaricus. Biotechnology Progress, 2004a, 20, 248–254.
  • Panoff, J. M.; Thammavongs, B.; Gueguen, M. Cryoprotectants lead to phenotypic adaptation to freeze–thaw stress in Lactobacillus delbrueckii ssp. bulgaricus CIP 101027T. Cryobiology, 2000, 40, 264–269
  • Wenrong, S.; Griffiths, M. W. Survival of Bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan-xanthan beads. International Journal of Food Microbiology, 2000, 61, 17–26.
  • Lee, K. Y.; Heo, T. R. Survival of Bifidobacterium longum immobilized in calcium alginate beads in simulated gastric juices and bile salts solution. Applied and Environmental Microbiology, 2000, 66, 869–873.
  • Sunohara, H.; Ohno, T.; Shibata, N.; Seki, K. Process for producing capsule and capsule obtained thereby. 1995, US Patent 5:478-570.
  • Sultana, K.; Godward, G.; Reynolds, N.; Arumugaswamy, R.; Peiris, P.; Kailasapathy, K. Encapsulation of probiotic bacteria with alginate-starch and evaluation of survival in simulated gastrointestinal conditions and in yoghurt. International Journal of Food Microbiology, 2000, 62, 47–55.
  • Gomes, A. M. P.; Malcata, F. X. Bifidobacterium spp. And Lactobacillus acidophilus: Biological, biochemical, technological and therapeutical properties relevant for use as probiotics. Trends in Food Science & Technology, 1999, 10, 139–145.
  • Ding,W. K.; Shah, N. P. Acid, bile, and heat tolerance of free and microencapsulated probiotic bacteria. Journal of Food Science, 2007, 72(9), 446–450.
  • Avila-Reyesa, S. V.; Garcia-Suareza, F. J.; Jiménez, M. T.; Martín- Gonzalez, M. F. S.; Bello-Perez, L. A. Protection of L. rhamnosus by spray-drying using two prebioticscolloids to enhance the viability. Carbohydrate Polymers, 2014, 102, 423–430.
  • Vinderola, C. G.; Costa, G. A.; Regenhardt, S.; Reinheimer, J. A. Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. International Dairy Journal, 2002, 12, 579–589.
  • Lucas, A.; Sodini, I.; Monnet, C.; Jolivet, P.; Corrieu, G. Probiotic cell counts and acidification in fermented milks supplemented with milk protein hydrolysates. International Dairy Journal, 2004, 14, 47–53.
  • Carvalho, A. S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F. X.; Gibbs, P.. Survival of freeze-dried Lactobacillus plantarum and Lactobacillus rhamnosus during storage in the presence of protectants. Biotechnology Letters, 2002, 24, 1587–1591.
  • Önneby, K.; Pizzul, L.; Bjerketorp, J.; Mahlin, D.; Håkansson, S.; Wessman, P. Effects of di- and polysaccharide formulations and storage conditions on survival of freezedried Sphingobium sp.World Journal of Microbiology and Biotechnology, 2013, 29(8), 1399–1408.
  • Nobakhti, A. R.; Ehsani, M. R.; Mousavi, S. M.; Mortazavian, A. M. Influence of lactulose and Hi-maize addition on viability of probiotic microorganisms in freshly made synbiotic fermented milk drink. Milchwissenschaft, 2009, 64, 191–193.
  • Rycroft, C. E.; Jones, M. R.; Gibson, G. R.; Rastall, R. A. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. Journal of Applied Microbiology, 2001, 91, 878–887.
  • Heydari, S.; Mortazavian, A. M.; Ehsani, M. R.; Mohammadifar, M. A.; Ezzatpanah, H. Biochemical, microbiological and sensory characteristics of probiotic yogurt containing various prebiotic compounds. Italian Journal of Food Science, 2011, 23, 153– 163.
  • De Vuyst, L. (Technology aspects related to the application of functional starter cultures. Food Technology and Biotechnology, 2000, 38, 105–112.
  • Holzapfel,W. H.; Haberer, P.; Geisen, R.; Bjo rkroth, J.; Schillinger, U. Taxonomy and important features of probiotic microorganisms in food and nutrition. The American Journal of Clinical Nutrition, 2001, 73, 365S–373S.
  • Kawasaki, S.; Mimura, T.; Satoh, T.; Takeda, K.; Niimura, Y. Response of the microaerophilic Bifidobacterium species, B. boum and B. thermophilum, to oxygen. Applied and Environmental Microbiology, 2006, 72, 6854–6858.
  • Talwalkar, A.; Kailasapathy, K. A review of oxygen toxicity in probiotic yogurts: Influence on the survival of probiotic bacteria and protective techniques. Comprehensive Reviews in Food Science and Food Safety, 2003, 3, 117–124.
  • Roy, D. Technological aspects related to the use of Bifidobacteria in dairy products. Le Lait, 2005, 85, 39–56.
  • Dave, R.I.; Shah, N. P. Effectiveness of ascorbic acid as an oxygen scavenger in improving viability of probiotic bacteria in yoghurts made with commercial starter cultures. International Dairy Journal, 1997b, 7, 435–443.
  • Talwalkar, A.; Miller, C. W.; Kailasapathy, K.; Nguyen, M. H. Effect of packaging materials and dissolved oxygen on the survival of probiotic bacteria in yoghurt. International Journal of Food Science & Technology, 2004, 39, 605–611.
  • Zayed, G.; Roos, Y. H. Influence of trehalose and moisture content on survival of Lactobacillus salivarius subjected to freeze drying and storage. Process Biochemistry (Barking, London, England), 2004, 39, 1081–1086.
  • Weinbreck, F.; Bodnár, I.; Marco, M. L. Can encapsulation lengthen the shelf-life of probiotic bacteria in dry products? International Journal of Food Microbiology, 2010, 136, 364–367.
  • Gardiner, G. E.; O’Sullivan, E.; Kelly, J.; Auty, M. A.; Fitzgerald, G. F.; Collins, J. K.; Ross, R. P.,; Stanton, C. Comparative survival rates of human-derived probiotic Lactobacillus paracasei and L. salivarius strains during heat treatment and spray drying. Applied and Environmental Microbiology, 2000, 66, 2605– 2612.
  • Mortazavian, A. M.; Ehsani, M. R.; Mousavi, S. M.; Sohrabvandi, S.; Reinheimer, J. Effect of refrigerated storage temperature on the viability of probiotic microorganisms in yoghurt. International Journal of Dairy Technology, 2007a, 59, 123– 127.
  • Mortazavian, A. M.; Razavi, S. H.; Ehsani, M. R.; Sohrabvandi, S. Principles and methods of microencapsulation of probiotic microorganisms. Iranian Journal of Biotechnology, 2007b, 5, 1–18.
  • Bruno, F. A.; Shah, N. P. Viability of two freeze-dried strains of Bifidobacterium and commercial preparations at various temperatures during prolonged storage. Journal of Food Science, 2003, 68, 2336–2339.
  • Dunne, C.; O’Mahony, L.; Murphy, L.; Thornton, G.; Morrissey, D.; O’Halloran, S.; Feeney, M.; Flynn, S. In vitro selection criteria for probiotic bacteria of human origin: Correlation with in vivo findings. The American Journal of Clinical Nutrition, 2001, 73, 386S–392S.
  • Sheehan, V. M.; Ross, P.; Fitzgerald, G. F. Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Science & Emerging Technologies, 2007, 8, 279–284.
  • Erkkila, S.; Suihko, M. L.; Eerola, S.; Petaja, E.; Mattila- Sandholm, T. Dry fermented sausages by Lactobacillus rhamnosus strains. International Journal of Food Microbiology, 2001, 64, 205–210.
  • Jayamanne, V. S.; Adams, M. R. Survival of probiotic Bifidobacteria in buffalo curd and their effect on sensory properties. International Journal of Food Science & Technology, 2004, 39, 719–725.
  • Janson, S. E. A.; Gallet, G.; Heft, T.; Karlsson, S.; Gedde, U. W.; Hendenqvist, M. Packing materials for fermented milk, part 2: Solute-induced changes and effects of material polarity and thickness on food quality. Packaging Technology and Science, 2002, 15, 287–300.
  • Miller, C. W.; Nguyen, M. H.; Rooney, M.; Kailasapthy, K. The influence of packaging materials on the dissolved oxygen content of probiotic yogurt. Packaging Technology and Science, 2002, 15, 133–138.
  • Miller, C. W.; Nguyen, M. H.; Rooney, M.; Kailasapthy, K. The control of dissolved oxygen content in probiotic yogurts by alternative packing materials. Packaging Technology and Science, 2003, 16, 61–67.
  • Cruz, A. G.; Castro,W. F.; Faria, J. A. F.; Bolini, H. M. A.; Celeghini, R. M. S.; Raices, R. S. L.; Oliveira, C. A. F.; Freitas, M. Q.; Conte Júnior, C. A.; Mársico, E. T. Stability of probiotic yogurt added with glucose oxidase in plastic materials with different permeability oxygen rates during the refrigerated storage. Food Research International, 2013, 51, 723–728.
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Makaleler
Yazarlar

Ecem Akan Bu kişi benim

Özer Kınık

Yayımlanma Tarihi 18 Aralık 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 11 Sayı: 2

Kaynak Göster

APA Akan, E., & Kınık, Ö. (2015). Gıda Üretimi ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler - Factors Effecting Probiotic Viability During Processing and Storage of Food. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 11(2). https://doi.org/10.18466/cbujos.83380
AMA Akan E, Kınık Ö. Gıda Üretimi ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler - Factors Effecting Probiotic Viability During Processing and Storage of Food. CBUJOS. Aralık 2015;11(2). doi:10.18466/cbujos.83380
Chicago Akan, Ecem, ve Özer Kınık. “Gıda Üretimi Ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler - Factors Effecting Probiotic Viability During Processing and Storage of Food”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 11, sy. 2 (Aralık 2015). https://doi.org/10.18466/cbujos.83380.
EndNote Akan E, Kınık Ö (01 Aralık 2015) Gıda Üretimi ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler - Factors Effecting Probiotic Viability During Processing and Storage of Food. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 11 2
IEEE E. Akan ve Ö. Kınık, “Gıda Üretimi ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler - Factors Effecting Probiotic Viability During Processing and Storage of Food”, CBUJOS, c. 11, sy. 2, 2015, doi: 10.18466/cbujos.83380.
ISNAD Akan, Ecem - Kınık, Özer. “Gıda Üretimi Ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler - Factors Effecting Probiotic Viability During Processing and Storage of Food”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 11/2 (Aralık 2015). https://doi.org/10.18466/cbujos.83380.
JAMA Akan E, Kınık Ö. Gıda Üretimi ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler - Factors Effecting Probiotic Viability During Processing and Storage of Food. CBUJOS. 2015;11. doi:10.18466/cbujos.83380.
MLA Akan, Ecem ve Özer Kınık. “Gıda Üretimi Ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler - Factors Effecting Probiotic Viability During Processing and Storage of Food”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 11, sy. 2, 2015, doi:10.18466/cbujos.83380.
Vancouver Akan E, Kınık Ö. Gıda Üretimi ve Depolanması Sırasında Probiyotiklerin Canlılıklarını Etkileyen Faktörler - Factors Effecting Probiotic Viability During Processing and Storage of Food. CBUJOS. 2015;11(2).