Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 69 Sayı: 1, 900 - 909, 30.06.2020
https://doi.org/10.31801/cfsuasmas.538177

Öz

Kaynakça

  • Babaarslan, M. and Yayli, Y., On helices and Bertrand curves in Euclidean 3-space, Mathematical and Computational Applications, 18(1)(2013) 1-11.
  • Cheng, Y.M. and Lin, C.C., On the generalized Bertrand curves in Euclidean N-spaces, Note di Matematica, 29(2)(2009) 33-39.
  • Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geom. 74 (2002), 97-109.
  • Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turk J Math. 28 (2004), 153-163.
  • Liu, H. and Wang, F., Mannheim partner curves in 3-space, J. Geom. 88 (2008), 120-126.
  • Matsuda, H. and Yorozu, S., Notes on Bertrand curves, Yokohama Mathematical Journal, 50(2003) 41-58.
  • Struik, D.J., Lectures on Classical Di¤erential Geometry, Dover Publications, 1988.
  • Uzunoğlu, B., Gök, ·I. and Yayli, Y., A new approach on curves of constant precession, Appl. Math. Comput. 275 (2016), 317-323.
  • Wang, F. and Liu, H., Mannheim partner curves in 3-Euclidean space, Math.Pract. Theory. 37 (2007), 141-143.
  • Whittemore, J.K., Bertrand curves and helices, Duke Math. J. 6 (1940), 235-245.
  • Zhao, W., Pei, D. and Cao, X., Mannheim curves in nonflat 3-Dimensional Space Forms, Adv. Math. Phys. 2015 (2015), 1-9.

Alternative partner curves in the Euclidean 3-space

Yıl 2020, Cilt: 69 Sayı: 1, 900 - 909, 30.06.2020
https://doi.org/10.31801/cfsuasmas.538177

Öz

In the present paper, a new type of special curve couple which are called WC^{∗}-partner curves are introduced according to alternative moving frame {N,C,W}. The distance function between the corresponding points of reference curve and its partner curve is obtained. Besides, the angle function between the vector fields of alternative frame of the curves is expressed by means of alternative curvatures f and g. In addition to these, various characterizations are obtained related to these curves.

Kaynakça

  • Babaarslan, M. and Yayli, Y., On helices and Bertrand curves in Euclidean 3-space, Mathematical and Computational Applications, 18(1)(2013) 1-11.
  • Cheng, Y.M. and Lin, C.C., On the generalized Bertrand curves in Euclidean N-spaces, Note di Matematica, 29(2)(2009) 33-39.
  • Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geom. 74 (2002), 97-109.
  • Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turk J Math. 28 (2004), 153-163.
  • Liu, H. and Wang, F., Mannheim partner curves in 3-space, J. Geom. 88 (2008), 120-126.
  • Matsuda, H. and Yorozu, S., Notes on Bertrand curves, Yokohama Mathematical Journal, 50(2003) 41-58.
  • Struik, D.J., Lectures on Classical Di¤erential Geometry, Dover Publications, 1988.
  • Uzunoğlu, B., Gök, ·I. and Yayli, Y., A new approach on curves of constant precession, Appl. Math. Comput. 275 (2016), 317-323.
  • Wang, F. and Liu, H., Mannheim partner curves in 3-Euclidean space, Math.Pract. Theory. 37 (2007), 141-143.
  • Whittemore, J.K., Bertrand curves and helices, Duke Math. J. 6 (1940), 235-245.
  • Zhao, W., Pei, D. and Cao, X., Mannheim curves in nonflat 3-Dimensional Space Forms, Adv. Math. Phys. 2015 (2015), 1-9.
Toplam 11 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Beyhan Yılmaz 0000-0002-5091-3487

Aykut Has 0000-0003-0658-9365

Yayımlanma Tarihi 30 Haziran 2020
Gönderilme Tarihi 11 Mart 2019
Kabul Tarihi 25 Şubat 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 69 Sayı: 1

Kaynak Göster

APA Yılmaz, B., & Has, A. (2020). Alternative partner curves in the Euclidean 3-space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), 900-909. https://doi.org/10.31801/cfsuasmas.538177
AMA Yılmaz B, Has A. Alternative partner curves in the Euclidean 3-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Haziran 2020;69(1):900-909. doi:10.31801/cfsuasmas.538177
Chicago Yılmaz, Beyhan, ve Aykut Has. “Alternative Partner Curves in the Euclidean 3-Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69, sy. 1 (Haziran 2020): 900-909. https://doi.org/10.31801/cfsuasmas.538177.
EndNote Yılmaz B, Has A (01 Haziran 2020) Alternative partner curves in the Euclidean 3-space. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69 1 900–909.
IEEE B. Yılmaz ve A. Has, “Alternative partner curves in the Euclidean 3-space”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 69, sy. 1, ss. 900–909, 2020, doi: 10.31801/cfsuasmas.538177.
ISNAD Yılmaz, Beyhan - Has, Aykut. “Alternative Partner Curves in the Euclidean 3-Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 69/1 (Haziran 2020), 900-909. https://doi.org/10.31801/cfsuasmas.538177.
JAMA Yılmaz B, Has A. Alternative partner curves in the Euclidean 3-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69:900–909.
MLA Yılmaz, Beyhan ve Aykut Has. “Alternative Partner Curves in the Euclidean 3-Space”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 69, sy. 1, 2020, ss. 900-9, doi:10.31801/cfsuasmas.538177.
Vancouver Yılmaz B, Has A. Alternative partner curves in the Euclidean 3-space. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020;69(1):900-9.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.