Notes on the second-order tangent bundles with the deformed Sasaki metric
Yıl 2022,
Cilt: 71 Sayı: 2, 502 - 517, 30.06.2022
Kübra Karaca
,
Aydın Gezer
,
Abdullah Mağden
Öz
The paper deals with the second-order tangent bundle T2MT2M with the deformed Sasaki metric ¯gg¯ over an n−dimensional Riemannian manifold gover an n−dimensional Riemannian manifold (M,g)(M,g). We calculate all Riemannian curvature tensor fields of the deformed Sasaki metric ¯gg¯ and search Einstein property of and search Einstein property of T2MT2M. Also the weakly symmetry properties of the deformed Sasaki metric are presented.
Kaynakça
- Bejan, C. L., Crasmareanu, M., Weakly-symmetry of the Sasakian lifts on tangent bundles, Publ. Math. Debrecen, 83(1-2) (2013), 63-69.
- Binh, T. Q.,Tamassy, L., On recurrence or pseudo-symmetry of the Sasakian metric on the tangent bundle of a Riemannian manifold, Indian J. Pure Appl. Math., 35(4) (2004), 555-560.
- Gezer, A., Magden, A., Geometry of the second-order tangent bundles of Riemannian manifolds, Chin. Ann. Math. Ser. B, 38(4) (2017), 985-998. DOI:10.1007/s11401-017-1107-4.
- De Leon M., Vazquez, E., On the geometry of the tangent bundles of order 2, Analele Universitatii Bucuresti Matematica, 34 (1985), 40-48.
- Djaa, M., Gancarzewicz, J., The geometry of tangent bundles of order r, Boletin Academia, Galega de Ciencias, 4 (1985), 147-165.
- Dodson, C. T. J., Radivoiovici, M. S., Tangent and frame bundles order two, Analele Stiintifice ale Universitatii Al. I. Cuza, 28 (1982), 63-71.
- Ishikawa, S., On Riemannian metrics of tangent bundles of order 2 of Riemannian manifolds, Tensor (N.S.), 34(2) (1980), 173-178.
- Magden, A., Gezer, A., Karaca, K., Some problems concerning with Sasaki metric on the second-order tangent bundles, Int. Electron. J. Geom., 13(2) (2020), 75–86. DOI:10.36890/iejg.750905.
- Morimoto, A., Liftings of tensor fields and connections to tangent bundles of higher order, Nagoya Math. J., 40 (1970), 99-120.
- Tani, M., Tensor fields and connections in cross-sections in the tangent bundles of order 2, Kodai Math. Sem. Rep., 21 (1969), 310-325.
- Yano, K., Ako, M., On certain operators associated with tensor field, Kodai Math. Sem. Rep., 20 (1968), 414-436.
- Yano, K., Ishihara, S., Tangent and Cotangent Bundles: Differential Geometry, Marcel Dekker, Inc., 420 p, New York, 1973.
Yıl 2022,
Cilt: 71 Sayı: 2, 502 - 517, 30.06.2022
Kübra Karaca
,
Aydın Gezer
,
Abdullah Mağden
Kaynakça
- Bejan, C. L., Crasmareanu, M., Weakly-symmetry of the Sasakian lifts on tangent bundles, Publ. Math. Debrecen, 83(1-2) (2013), 63-69.
- Binh, T. Q.,Tamassy, L., On recurrence or pseudo-symmetry of the Sasakian metric on the tangent bundle of a Riemannian manifold, Indian J. Pure Appl. Math., 35(4) (2004), 555-560.
- Gezer, A., Magden, A., Geometry of the second-order tangent bundles of Riemannian manifolds, Chin. Ann. Math. Ser. B, 38(4) (2017), 985-998. DOI:10.1007/s11401-017-1107-4.
- De Leon M., Vazquez, E., On the geometry of the tangent bundles of order 2, Analele Universitatii Bucuresti Matematica, 34 (1985), 40-48.
- Djaa, M., Gancarzewicz, J., The geometry of tangent bundles of order r, Boletin Academia, Galega de Ciencias, 4 (1985), 147-165.
- Dodson, C. T. J., Radivoiovici, M. S., Tangent and frame bundles order two, Analele Stiintifice ale Universitatii Al. I. Cuza, 28 (1982), 63-71.
- Ishikawa, S., On Riemannian metrics of tangent bundles of order 2 of Riemannian manifolds, Tensor (N.S.), 34(2) (1980), 173-178.
- Magden, A., Gezer, A., Karaca, K., Some problems concerning with Sasaki metric on the second-order tangent bundles, Int. Electron. J. Geom., 13(2) (2020), 75–86. DOI:10.36890/iejg.750905.
- Morimoto, A., Liftings of tensor fields and connections to tangent bundles of higher order, Nagoya Math. J., 40 (1970), 99-120.
- Tani, M., Tensor fields and connections in cross-sections in the tangent bundles of order 2, Kodai Math. Sem. Rep., 21 (1969), 310-325.
- Yano, K., Ako, M., On certain operators associated with tensor field, Kodai Math. Sem. Rep., 20 (1968), 414-436.
- Yano, K., Ishihara, S., Tangent and Cotangent Bundles: Differential Geometry, Marcel Dekker, Inc., 420 p, New York, 1973.